Undecenyl resorc[4]arene in the *chair* conformation as preorganized synthon for olefin metathesis

Francesca Ghirga,^{*a*} Ilaria D'Acquarica,^{*,*a*} Giuliano Delle Monache,^{*a*} Sara Toscano,^{*a*} Luisa Mannina,^{*a*} Anatoly P. Sobolev,^{*b*} Franco Ugozzoli,^{*c*} Domenico Crocco,^{*c*} and Bruno Botta^{*,*a*}

ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

TABLE OF CONTENTS

NMR signals of undecenyl resorc[4]arene 1a (Table 1S)	S3
NMR signals of undecenyl resorc[4]arene 1b (Table 2S)	S4
NMR signals of undecenyl resorc[4]arene 1c (Table 3S)	S5
Self-assembly of resorc[4]arene 1a in the crystal lattice (Figure 1S)	S 6
Crystal data, data collection and refinement parameters for resorc[4]arene 1a	S7
Structures of the second-generation Grubbs and Grubbs-Hoveyda catalysts (Figure 2S)	S 8
NMR signals of bicyclic alkene 2a (Table 4S)	S9
NMR signals of linear dimer 3a (Table 5S)	S10
ESI-HRMS spectrum of ω -undecenyl (<i>E</i>)-2,4-dimethoxycinnamate	S11
ESI-HRMS spectrum of undecenyl resorc[4]arenes 1a-1c	S12
ESI-HRMS spectrum of bicyclic alkene 2a	S13
ESI-HRMS spectrum of linear dimer 3a	S14
NMR spectra of ω -undecenyl (<i>E</i>)-2,4-dimethoxycinnamate	S15–S16
NMR spectra of undecenyl resorc[4]arene 1a (chair)	S17–S18
NMR spectra of undecenyl resorc[4]arene 1b (cone)	S19–S20
NMR spectra of undecenyl resorc[4]arene 1c (1,2-alternate)	S21–S22
NMR spectra of bicyclic alkene 2a	S23–S24
2D NMR spectra of bicyclic alkene 2a	S25–S28
NMR spectra of linear dimer 3a	S29–S30
FT-IR (KBr) spectrum of polymer P1a (Figure 3S)	S31
Spectra of reduction compound 2ar	S32–S34
Computational methods	S35
Solid state ¹³ C CPMAS NMR spectroscopy	S36
Cartesian coordinates for model complexes (A) and (B)	S37–S38
References	S39

Carbon	¹⁵ C	¹ H
C=O	172.4	-
C _{Ar} -O	156.6	-
	155.8	
=CH	139.2	5.82 ddt (17.2, 10.2, 6)
CH _i (26,28)	126.6	6.19 s
CH _i (25,27)	125.7	6.82 s
C _{Ar} –C	125.3	-
	122.6	
$=CH_2$	114.3	4.99 br d (17.2)
		4.92 br d (10.2)
CH _e (5,17)	97.1	6.47 s
CH _e (11,23)	95.3	6.39 s
OCH ₂	64.3	3.98 br t
		3.92 t
OMe	56.0	3.88 s
	56.0	3.64 s
CH ₂ -(CO)	39.6	2.73 dd (14.5, 10.5)
		2.65 dd (14.5, 6.5)
CH ₂ -(CH=)	34.0	2.05 q (6)
СН	33.0	5.04 dd (10.5, 6.5)
CH ₂ -(CH ₂ -CH=)	29.1	1.46 m
CH ₂ -(CH ₂ O)	28.7	1.38 m
$CH_2 \times 5$	29.6	1.24 br m
	29.6	
	29.5	
	29.3	
	26.0	

 Table 1S. ¹H NMR and ¹³C NMR signals* of undecenyl resorc[4]arene 1a (chair)

* 600 MHz (¹H) and 100 MHz (¹³C), CDCl₃, T = 300 K; coupling constants J (Hz) are given in parentheses.

Carbon	^{13}C	¹ H
C=0	172.5	-
C _{Ar} –O	156.2	-
=CH	139.3	5.82 ddt (17.2, 10.2, 6.5)
CH _i (25,26,27,28)	126.0	6.51 s
C _{Ar} -C	124.2	-
=CH ₂	114.3	4.99 br d (17.2)
		4.93 br d (10.2)
CH _e (5,11,17,23)	96.4	6.30 s
OCH ₂	64.4	3.95 t (6.8)
OMe	56.0	3.63 s
CH ₂ -(CO)	39.2	2.83 d (7.6)
CH ₂ -(CH=)	34.0	2.03 m (6.5)
СН	33.2	4.96 t (7.6)
CH ₂ -(CH ₂ -CH=)	29.1	1.35 br m
CH ₂ -(CH ₂ O)	28.8	1.49 br m
$CH_2 \times 5$	29.7	1.27 br m
	29.6	
	29.5	
	29.3	
	26.0	

 Table 2S. ¹H NMR and ¹³C NMR signals* of undecenyl resorc[4]arene 1b (cone)

* 600 MHz (¹H) and 100 MHz (¹³C), CDCl₃, T = 300 K; coupling constants J (Hz) are given in parentheses.

Carbon	¹³ C	¹ H
C=O	172.7×2	-
	172.3	
	172.2	
C _{Ar} -O (6,22)	156.4	-
C _{Ar} -O (4,24)	156.3	
C _{Ar} -O (10,18)	156.1	
C _{Ar} -O (12,16)	156.1	
=CH	139.2	5.79 ddt (17.2, 10.2, 6.5)
CH _i (25,28)	127.6	7.25 s
CH _i (26,27)	126.5	6.36 s
$C_{Ar} - C(7,21)$	124.7	-
C _{Ar} -C (1,3)	124.4	
C _{Ar} -C (13,15)	124.0	
C _{Ar} -C (9,19)	123.4	
$=CH_2$	114.4	4.97 br d (17.2)
		4.91 br d (10.2)
$CH_{e}(11,17)$	96.7	6.38 s
CH _e (5,23)	96.0	6.40 s
$OCH_2(2)$	64.4	4.00 t (7.0)
$OCH_2(14)$	63.1	3.97 t (7.0)
OCH ₂ (8,20)	64.4×2	3.91 t (7.0)
OMe	56.4	3.83 s
	56.1	3.82 s
	55.9	3.75 s
	55.9	3.64 s
CH ₂ -(CO) (2)	41.2	2.87 d (8.0)
CH ₂ -(CO) (14)	40.3	2.33 d (8.0)
CH ₂ -(CO) (8,20)	39.4×2	2.88 dd (15.1)
CH ₂ -(CH=)	34.0	2.03
CH (2)	34.0	5.46 t (8.0)
CH (14)	33.6	5.10 t (8.0)
CH (8,20)	34.0×2	5.06 dd (9.6, 6.5)
CH ₂ -(CH ₂ -CH=)	29.1	1.38 br m
CH ₂ -(CH ₂ O)	28.8	1.45 br m
$CH_2 \times 5$	29.7	1.27 br m
_	29.7	
	29.7	
	29.6	
	26.0	

Table 3S. ¹H NMR and ¹³C NMR signals* of undecenyl resorc[4]arene 1c (*1,2-alternate*)

* 600 MHz (¹H) and 100 MHz (¹³C), CDCl₃, T = 300 K; coupling constants J (Hz) are given in parentheses.

Figure 1S. Perspective views of the self-assembly of resorc[4]arene **1a** in the crystal lattice through hydrophilic and hydrophobic layers, with approximate thickness of the layers: (a) front view; (b) side view. Colors are as follows: C, grey; O, red. Hydrogen atoms are omitted for clarity.

Chemical formula	$C_{88}H_{128}O_{16}$
Formula weight	1441.97
crystal system	triclinic
space group	P1
a (Å)	12.297(5)
b (Å)	17.946(5)
<i>c</i> (Å)	10.559(5)
α (°)	100.610(5)
β (°)	102.440(5)
γ (°)	105.110(5)
$V(\text{\AA}^3)$	2124(1)
Ζ	1
$\rho_{calcd} (g \times cm^{-3})$	1.127
$\mu (\mathrm{mm}^{-1})$	$0.6 (Cu-K_{\alpha})$
Data Collection and Refinement	
2θ max for data collection (°)	139.98
Temperature (K)	293
Data collected (h, k, l)	(-14, -21, -12) to (14, 21, 12)
Total reflections	8039
Unique reflections	7989 ($R_{int} = 0.0$)
Observed reflections	2598 [Fo>4.0σ(Fo)]
Goodness-of-fit S on $F^{2 [a]}$	1.040
Final R indices (obs. data) ^[b]	$R_1 = 0.0639, wR_2 = 0.1\overline{43}$
Largest diff. peak and hole $(e/Å^{-3})$	0.16/-0.12

Crystal data, data collection and refinement parameters for resorc[4]arene 1a

^[a] Goodness-of-fit S = $[\Sigma w (Fo^2 - Fc^2)^2 / (n-p)]^{1/2}$, where *n* is the number of reflections and *p* the number of parameters. ^[b] $R_I = \Sigma ||Fo| - |Fc|| / \Sigma |Fo|$, $wR_2 = [\Sigma w (Fo^2 - Fc^2)^2 / \Sigma w Fo^4]^{1/2}$.

Intensity data and cell parameters were recorded at room temperature (293 K) on a Siemens AED diffractometer using graphite monochromated Cu-K_{α} radiation. The intensities were corrected for Lorentz, polarization but not for absorption effects. This structure was characterized by poor diffraction, and several data collections carried out with different samples obtained from different crystallization methods always gave the same results.

The structure was solved by Direct methods using SIR2004 [1S] and refined on F_o^2 by full-matrix leastsquares procedures, using SHELXL-97 [2S]. The structure of the macrocycle is pseudo-centrosymmetric. The resorc[4]arene basket is centrosymmetric, but the terminal ester chains are non-centrosymmetric. All the non-hydrogen atoms were refined with anisotropic atomic displacements excepting 15 carbon atoms of the long aliphatic chains which were refined with isotropic atomic displacements. The hydrogen atoms were included in the refinement at idealized geometry (C-H 1.0 Å) and refined "riding" on the corresponding parent atoms.

Molecular geometry calculations were carried out using the PARST97 program [3S].

Figure 2S. Structures of the second-generation Grubbs (left) and Grubbs-Hoveyda (right) catalysts.

Carbon	¹³ C	'H	
C=O	172.5	-	
C _{Ar} –O	156.5	-	
	155.6		
CH=(<i>trans</i>)	130.8	5.34 br t (3)	
CH=(cis)	[130.1]	[5.32 br t (4)]	
CH _i (26,28)	126.3	6.17 br s	
		[6.18 br s]	
CH _i (25,27)	125.3	6.84 br s	
		[6.85 br s]	
C _{Ar} –C	125.3	-	
	122.6		
CH _e (5,17)	97.4	6.48 s	
CH _e (11,23)	95.5	6.40 s	
OCH ₂	64.3	3.95 dd (11.5, 7)	
		3.89 m	
OMe	56.1	3.64 s	
	55.9	3.90 s	
CH ₂ -(CO)	39.7	2.69 dd (14.5, 7)	
		2.64 dd (14.5, 7)	
CH_2 -(CH =)	32.0	2.01 m	
	[26.8]	[2.03 m]	
СН	32.8	5.05 t (7)	
$CH_2-(CH_2-CH=)$	28.9	1.35 m	
CH ₂ -(CH ₂ O)	28.6	1.50 m	
$CH_2 \times 5$	29.5	1.24 br m	
	29.3		
	29.1		
	28.1		
	25.9		

Table 4S. ¹H NMR and ¹³C NMR signals* of bicyclic alkene 2a

* 600 MHz (¹H) and 100 MHz (¹³C), CDCl₃, T = 300 K; coupling constants J (Hz) are given in parentheses. Proton and carbon resonances for the *cis* form, not coincident or overlapped by those of the *trans* form, are indicated by square brackets.

Carbon	¹³ C	¹ H
C=O	172.5	-
C _{Ar} –O	156.5	-
	155.6	
CH=(<i>trans</i>)	130.8	5.33 tt (3,1)
CH=(cis)	130.3	5.38 tt (3,1)
	[130.1]	[5.35 m]
	[129.8]	[5.36 m]
CH _i (26,28)	126.3	6.18 br s
CH _i (25,27)	125.3	6.87 br s
C _{Ar} –C	125.3	-
	122.6	
CH _e (5,17)	97.4	6.49 s
CH _e (11,23)	95.5	6.41 s
OCH ₂	64.3	3.92 m
		3.87 m
OMe	56.1	3.60 s
	55.9	3.88 s
CH ₂ -(CO)	39.7	2.67 m
CH ₂ -(CH=)	32.6	1.96 m
	32.0	2.02 m
	[26.7]	[2.03 m]
	[26.8]	[2.03 m]
СН	32.8	5.04 t (7.5)
CH ₂ -(CH ₂ -CH=)	29.4	1.32 m
	28.9	1.35 m
CH ₂ -(CH ₂ O)	28.6	1.50 m
$CH_2 \times 5$	29.5	1.24 br m
	29.3	
	29.1	
	28.1	
	25.9	

Table 5S. ¹H NMR and ¹³C NMR signals* of linear dimer 3a

* 600 MHz (¹H) and 100 MHz (¹³C), CDCl₃, T = 300 K; coupling constants J (Hz) are given in parentheses. Proton and carbon resonances for the *cis* form, not coincident or overlapped by those of the *trans* form, are indicated by square brackets.

ESI-HRMS spectrum of bicyclic alkene 2a. Solvent: MeCN (20 ppm)

ESI-HRMS spectrum of linear dimer 3a. Solvent: MeCN (30 ppm)

¹³C NMR spectrum of ω-undecenyl (*E*)-2,4-dimethoxycinnamate. 100 MHz, CDCl₃, 300 K

¹H NMR spectrum of undecenyl resorc[4]arene 1a (*chair*). 600 MHz, CDCl₃, 300 K

S18

¹H NMR spectrum of undecenyl resorc[4]arene 1b (*cone*). 600 MHz, CDCl₃, 300 K

¹³C NMR spectrum of undecenyl resorc[4]arene 1b (*cone*). 100 MHz, CDCl₃, 300 K

¹³C NMR spectrum of undecenyl resorc[4]arene 1c (*1,2-alternate*). 100 MHz, CDCl₃, 300 K

¹H NMR spectrum of bicyclic alkene 2a. 600 MHz, CDCl₃, 300 K

¹³C NMR spectrum of bicyclic alkene 2a. 100 MHz, CDCl₃, 300 K

2D NMR spectra of bicyclic alkene 2a (NOESY)

2D NMR spectra of bicyclic alkene 2a (TOCSY)

2D NMR spectra of bicyclic alkene 2a (HMBC)

2D NMR spectra of bicyclic alkene 2a (HSQC)

¹H NMR spectrum of linear dimer 3a. 600 MHz, CDCl₃, 300 K

¹³C NMR spectrum of linear dimer 3a. 100 MHz, CDCl₃, 300 K

^1H NMR spectrum of compound 2ar. $400~\text{MHz},~\text{CDCl}_3,~300~\text{K}$

¹³C NMR spectrum of compound 2ar. 100 MHz, CDCl₃, 300 K

Computational methods

The Gaussian 09 program [4S] was used for the *ab initio* molecular orbital calculations. $6-311++G^{**}$, aug-cc-pVDZ, and aug-cc-pVTZ basis sets were used. Electron correlation energies were corrected by the second-order Møller-Plesset perturbation method (MP2) [5S,6S]. Geometries of isolated molecules were optimized at the MP2/6-311++G^{**} level and were used for calculations of the interaction energies of the resorcinol-ethylene complexes. Basis set superposition error (BSSE) [7S] was corrected by the counterpoise method of Simon [8S] implemented in Gaussian 09.

Solid state ¹³C CPMAS NMR spectroscopy

Solid state ¹³C CPMAS NMR spectra were measured on a Bruker Avance III spectrometer at 100.63 MHz. Samples were packed into 4 mm zirconia rotors, and sealed with Kel-F caps. The spin rate was 8 kHz. The cross polarization (CP) was performed by applying the variable spin-lock sequence RAMP-CPMAS [9S]; the RAMP was applied on the ¹H channel and during the contact time the amplitude of the RAMP was increased from 50 to 100% of the maximum value. All the spectra were obtained at room temperature, with a contact time optimized at 6 ms, the recycle delay being 3 s and acquired with a time domain of 1024 data points, zero filled and Fourier transformed with a size of 4096 data points, applying an exponential multiplication with a line broadening of 4 Hz. ¹³C chemical shifts were referenced to tetramethylsilane used as an external reference.

Cartesian coordinates (Å) for model complex (A)

Atom	x y	Z	
С	12.80975546	7.92727560	-2.48757130
С	13.07512885	9.21075977	-2.93531044
С	10.84086326	9.53742799	-3.64278803
С	10.51593875	8.26766875	-3.19517152
Н	12.37513845	11.03589065	-3.84890907
Н	13.60283534	7.31041213	-2.11096439
С	12.15991417	11.90769951	-0.80208345
С	12.55617455	13.14785841	-0.48854505
Н	12.89502659	11.15136291	-1.05662163
Н	11.10374536	11.65923987	-0.80157900
Н	13.61234336	13.39631806	-0.48904952
Н	11.82106214	13.90419501	-0.23400684
С	11.50180137	7.49188163	-2.61063303
Н	11.23559330	6.51847267	-2.24018296
С	12.12715346	10.04182272	-3.51362355
Н	9.50816195	7.92602934	-3.33300270
0	14.35764536	9.60241465	-2.79797202
Н	14.45453783	10.47908175	-3.12303608
0	9.83229912	10.29222692	-4.12255980
Н	10.16714840	11.12764395	-4.39376885

Cartesian coordinates (Å) for model complex (B)

Atom	x y	Z	
0	15.5002992	3 8.43747519	3.31149209
0	16.4178934	8 6.52219188	-1.00445420
Н	17.3093086	0 6.33251802	-0.77423060
Н	16.3713916	2 8.28123288	3.62833020
Н	17.1009550	0 7.33929434	1.46239900
С	13.4837301	3 8.00317611	0.36827157
Н	12.4776257	7 8.22342630	0.06026364
С	14.6561176	3 3.33267609	1.46310411
Н	13.7347079	4 2.88026280	1.11037253
Н	15.5440619	8 2.72273962	1.59586515
С	15.1628018	4 8.09719432	2.05156810
С	16.0740528	0 7.51184616	1.18350519
С	15.6488396	9 7.13733890	-0.08398995
С	14.3651107	4 7.41612113	-0.52278996
Н	14.0115575	8 7.20447283	-1.51351402
С	13.8527104	6 8.32319004	1.66322353
Н	13.1633556	7 8.73785342	2.37327512
С	14.6974066	3 4.64338660	1.73450031
Н	13.8117344	0 5.25672563	1.60306204
Н	15.6197066	6 5.09384516	2.08709898

References

- [1S] Burla, M. C.; Calandro, R.; Cavalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro, L.; Giacovazzo,
- C.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 2005, 38, 1381.
- [2S] Sheldrick, G. M. SHELX-97, Program for Crystal Structure Refinement, University of Göttingen,
- 1997; http://shelx.uni-ac.gwdg.de/shelx/index.html.
- [3S] Nardelli, M. PARST97, updated version of PARST95, J. Appl. Crystallogr. 1995, 28, 659.
- [4S] Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
- Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M.
- Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M.
- Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T.
- Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N.
- Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S.
- Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C.
- Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.
- W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg,
- S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- [5S] Møller, C.; Plesset, M. Phys. Rev. 1934, 46, 618.
- [6S] Head-Gordon, M.; Pople, J. A.; Frisch, M. J. Chem. Phys. Lett. 1988, 153, 503.
- [7S] Ransil, B. J. J. Chem. Phys. 1961, 34, 2109.
- [8S] Simon, S.; Duran, M.; Dannenberg, J. J. J. Chem. Phys. 1996, 105, 11024.
- [9S] Metz G.; Wu, X.; Smith, S. O. J. Magn. Reson. 1994, 110, 219.