Supporting Information

A fluorine substituted phenanthroline-based ruthenium complex for dye-sensitized solar cells: the fluoro-substitution effect on the ancillary ligand

Qiong-Yan Yu, Jian-Feng Huang, Yong Shen, Li-Min Xiao, Jun-Min Liu, * Dai-Bin Kuang, Cheng-Yong Su*

^a MOE Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China.

Experimental Section

Synthesis of 1,10-phenanthroline-5,6-dione. Solid KBr (12.0 g, 100 mmol,) and 1,10-phenanthroline (1.08 g, 10 mmol) were placed in a two-necked flask immersed in a ice/water bath, and then concentrated H_2SO_4 (98%, 20 mL) and concentrated HNO_3 (68%, 20 mL) as added dropwise with stirring. The resulting mixture was stirred for 30 min at room temperature and then for 4 h at 80 °C. The reaction was neutralized to pH=6 with aqueous ammonia solution after cooling to room temperature. CH_2Cl_2 was layered over the suspension and the two-phase mixture was stirred until the solid had dissolved. The organic phase was separated, washed with water and concentrated to dryness. The crude product was purified by recrystallization from CH_2Cl_2 and ethanol. Yield: 80%.

Synthesis of 2-(4-fluorinphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (L_F). A mixture of 1,10-phenanthroline-5,6-dione (210 mg, 1 mmol), ammonium acetate (1.54 g, 20 mmol), 4-fluorobenzaldehyde (136 mg, 1.1 mmol) and glacial acetic acid (30 mL) was heated at 120 °C for 4 h. After the reaction cooled to room temperature and neutralized with concentrated aqueous ammonia, the yellow precipitate was collected and washed with water. The crude product was purified by recrystallization from chloroform/ethanol to obtain 2-(4-fluorinphenyl)-1Himidaz[4,5-f][1,10] phenanthroline as a yellow-white solid. Yield: 70%. ¹H-NMR (300 MHz, DMSO-*d*₆, δ ppm): 7.45 (t, *J* = 8.7 Hz, 2H; phenyl), 7.81 (m, 2H, phenyl), 8.31(d, *J* = 2.7 Hz, 2H, phenyl), 8.87(m, 2H, phen), 9.01 (d, *J* = 3.9 Hz, 2H, phenyl). MS(ESI *m/z*): 315.10 ([M+H]⁺), found 315.17 ([M+H]⁺).

Synthesis of 4-(1H-imidazo[4,5-f]-[1,10]phenanthrolin-2-yl)-N,N-dimethylaniline (L_N). L_N was synthesized by a procedure to L_F except that 4-(dimethylamino) benzaldehyde was used in place of 4-fluorobenzaldehyde. Yield: 65%. ¹H-NMR (300 MHz, DMSO- d_6 , δ ppm): 3.01(s, 3H), 3.32(s, 3H), 6.87(d, J = 9.0 Hz, 2H, phenyl), 7.78(m, J = 6.9 Hz, 2H, phenyl), 8.88(d, J = 1.2 Hz, 2H, phenyl), 8.97(d, J = 3.0 Hz, 2H, phenyl). MS (ESI m/z): 311.13 ([M+H]⁺), found 311.20 ([M+H]⁺).

Synthesis of 2-(4-methylphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (L_C). L_C was synthesized by a procedure to L_F except that 4-methylbenzaldehyde was used in place of 4-fluorobenzaldehyde. Yield: 70%. ¹H-NMR (300 MHz, DMSO- d_6 , δ ppm): 2.40 (s, 3H), 7.38(d, J = 8.1 Hz, 2H), 7.85(d, J = 4.2 Hz, 2H, phenyl), 8.15 (d, J = 7.8 Hz, 2H, phenyl), 8.90 (d, J = 4.5 Hz, 2H, phenyl), 8.99 (m, 2H; phenyl). MS (ESI m/z): 340.16 ([M+H]⁺), found 340.23 ([M+H]⁺).

Scheme S1

Fig. S1 Absorption spectra of L_F, L_N, L_C, and H₂dcbpy in DMF

Fig. S2 Cyclic voltammograms of $\mathbf{RuL}_{\mathbf{F}}$, $\mathbf{RuL}_{\mathbf{N}}$, and $\mathbf{RuL}_{\mathbf{C}}$ in a DMF solution of TBAPF₆ (0.1 M). (The concentrations of three dyes were 3×10^{-3} M).

Fig. S3 Absorption and emission spectra of (a) RuL_F, (b) RuL_N, and (c) RuL_C measured in DMF.

Fig. S4 computed spectrum of RuL_F

Fig. S5 Computed isosurface plots of selected molecular orbitals (from HOMO-2 to LUMO+2) of dye RuL_F , which are mainly involved in the optically active electronic transitions 1 and 2.

Fig. S6 EIS bode plots (i.e. the phase of the impedance vs the frequency) for DSSCs based on RuL_F , RuL_N , and RuL_C dyes.

Fig. S7 Charge collection efficiencies from IMPS and IMVS for DSSCs based on RuL_F , RuL_N , and RuL_C dyes.

Dye	Elec. transition	Calcn. (nm)	Exp. (nm)	Composition	
RuL _F	1	580	512	HOMO-2→LUMO	70.6%
				HOMO→LUMO+2	12.8%
	2	501	470	HOMO-1→LUMO+1	38.5%
				HOMO→LUMO+2	28.4%
	3	311	302	HOMO-6→LUMO+2	31.4%
				HOMO-8→LUMO	23.4%
				HOMO-4→LUMO+4	18.4%

Table S1 Character table of calculated vertical excitations 1, 2, and 3 for dye RuL_{F}^{a}

^a Contributions below 12% are not shown.

dye	$J_{sc}/\text{mA cm}^{-2}$	V_{oc}/mV	FF	η (%)
RuL _F	14.02	675	0.72	6.85
RuL _F -CDCA	15.39	656	0.72	7.28