Electronic Supplementary Information (ESI)

Design, synthesis and antitumor activity of novel 8-substituted 2,3,5,6-tetrahydrobenzo[1,2-*b*;4,5-*b'*]difuran imidazolium salt derivatives

Cheng-Jun Sun^a, Wen Chen^a, Yan Li^b, Lan-Xiang Liu^a, Xue-Quan

Wang ^a, Li-Juan Li ^a, Hong-Bin Zhang ^a, *, Xiao-Dong Yang ^a, *

^aKey Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China. Tel.: +86-871-5031119; Fax.: +86-871-5035538. E-mail: xdyang@ynu.edu.cn, zhanghbyd@gmail.com

^bState Key Laboratory for Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650204, P. R. China

TABLE OF CONTENTS

1. General Experimental	
2. Experimental Procedures and Analytical Data	
3. X-ray crystal structure of compound 20	S33-S44
4. Biological Assay Procedures and Results	S45-S46
5. Docking Calculations	S47-S48
6. ¹ H-NMR and ¹³ C-NMR Spectral of New Compounds 8-47	S49-S88

1. General Experimental

Melting points were obtained on a XT-4 melting-point apparatus and were uncorrected. Proton nuclear magnetic resonance (¹H-NMR) spectra were recorded on a Bruker Avance 300 spectrometer at 300 MHz. Carbon-13 nuclear magnetic resonance (¹³C-NMR) was recorded on Bruker Avance 300 spectrometer at 75 MHz. Chemical shifts are reported as δ values in parts per million (ppm) relative to tetramethylsilane (TMS) for all recorded NMR spectra. Low-resolution Mass spectra were recorded on a VG Auto Spec-3000 magnetic sector MS spectrometer. High Resolution Mass spectra were taken on AB QSTAR Pulsar mass spectrometer.

Silica gel (200–300 mesh) for column chromatography and silica GF_{254} for TLC were produced by Qingdao Marine Chemical Company (China). All air- or moisturesensitive reactions were conducted under an argon atmosphere. Starting materials and reagents used in reactions were obtained commercially from Acros, Aldrich, Fluka and were used without purification, unless otherwise indicated.

2. Experimental Procedures and Analytical Data

Synthesis of compounds 8-47.

Entry	Compound no.	imidazole ring	R'	Х	Yields (%)
1	8	imidazole	_	_	73
2	9	2-methyl-imidazole	_	_	68
3	10	benzimidazole	_	_	79
4	11	5,6-dimethyl-benzimidazole	_	_	68
5	12	imidazole	benzyl	Br	92
6	13	imidazole	4-methylbenzyl	Br	83
7	14	imidazole	4-bromobenzyl	Br	88
8	15	imidazole	4-nitrobenzyl	Br	95
9	16	imidazole	2-naphthylmethyl	Br	90
10	17	imidazole	phenacyl	Br	91
11	18	imidazole	4-bromophenacyl	Br	95
12	19	imidazole	4-methoxyphenacyl	Br	95
13	20	imidazole	naphthylacyl	Br	90
14	21	2-methyl-imidazole	benzyl	Br	84
15	22	2-methyl-imidazole	4-methylbenzyl	Br	97
16	23	2-methyl-imidazole	4-bromobenzyl	Br	79
17	24	2-methyl-imidazole	4-nitrobenzyl	Br	97
18	25	2-methyl-imidazole	2-naphthylmethyl	Br	91
19	26	2-methyl-imidazole	phenacyl	Br	98
20	27	2-methyl-imidazole	4-bromophenacyl	Br	79
21	28	2-methyl-imidazole	4-methoxyphenacyl	Br	86
22	29	2-methyl-imidazole	naphthylacyl	Br	93
23	30	benzimidazole	butyl	Ι	77
24	31	benzimidazole	benzyl	Br	85
25	32	benzimidazole	4-methylbenzyl	Br	77
26	33	benzimidazole	4-bromobenzyl	Br	70
27	34	benzimidazole	2-naphthylmethyl	Br	64
28	35	benzimidazole	phenacyl	Br	95
29	36	benzimidazole	4-bromophenacyl	Br	88
30	37	benzimidazole	4-methoxyphenacyl	Br	96
31	38	benzimidazole	naphthylacyl	Br	86
32	39	5,6-dimethyl-benzimidazole	butyl	Ι	75
33	40	5,6-dimethyl-benzimidazole	benzyl	Br	96
34	41	5,6-dimethyl-benzimidazole	4-methylbenzyl	Br	83
35	42	5,6-dimethyl-benzimidazole	4-bromobenzyl	Br	93
36	43	5,6-dimethyl-benzimidazole	2-naphthylmethyl	Br	70
37	44	5,6-dimethyl-benzimidazole	phenacyl	Br	99
38	45	5,6-dimethyl-benzimidazole	4-bromophenacyl	Br	93
39	46	5,6-dimethyl-benzimidazole	4-methoxyphenacyl	Br	98
40	47	5,6-dimethyl-benzimidazole	naphthylacyl	Br	89

Structures and yields of compounds 8-47

ОМе

45

47

2.1 Synthesis of compound 2

A mixture of resorcinol **1** (5.0 g, 45.4 mmol), 1-bromo-2-chloroethane (30 mL, 363 mmol), finely powdered K_2CO_3 (19.0 g, 137 mmol) and acetone (30 mL) was stirred and heated at reflux under argon for 72 h. The reaction was cooled to room temperature and filtered through a short pad of Celite. The Celite was washed with CH₂Cl₂, and the filtrate and washes were combined and evaporated to dryness by rotatory evaporation. The residue was partitioned between AcOEt (20 mL) and H₂O (20 mL). The organic phase was washed with 2 M NaOH (2×30 mL), then H₂O (2×30 mL) and brine (30 mL), dried over Na₂SO₄ and evaporated under reduced pressure to yield the products **2** (8.0 g, 75%) as white powder.

Yield 75%, White powder, mp 75-77 °C. ¹H-NMR (300 MHz, CDCl₃) δ : 7.19 (1H, t, J = 8.1 Hz), 6.56-6.50 (3H, m), 4.20 (4H, t, J = 6.0 Hz), 3.79 (4H, t, J = 6.0 Hz). ¹³C-NMR (75 MHz, CDCl₃) δ : 159.47, 130.16, 107.58, 102.18, 68.07, 41.87.

2.2 Synthesis of compound 3

The ether **2** (8.0 g, 34.0 mmol) was suspended in glacial acetic acid (25 mL) and a solution of Br₂ (4.4 mL) in glacial acetic acid (10 mL) was added dropwise at 0–5 °C. The reaction mixture was allowed to reach room temperature and stirred for 3 h. The mixture was poured into ice/water (50 mL) and stirred for 15 min. The precipitate was filtered off and the solid was washed with cold 1:1 AcOH/H₂O (5×30 mL), then with cold H₂O until neutral pH (5×50 mL) and dried under reduced pressure until constant weight to yield the products **3** (12.8 g, 96%) as pale yellow powder.

Yield 96%, Yellow powder, mp 104-106 °C. ¹H-NMR (300 MHz, CDCl₃) δ : 7.70 (1H, s), 6.54 (1H, s), 4.26 (4H, t, *J* = 6.0 Hz), 3.85 (4H, t, *J* = 6.0 Hz). ¹³C-NMR (75 MHz, CDCl₃) δ : 154.92, 136.42, 105.07, 102.21, 70.07, 41.43.

2.3 Synthesis of compound 4

A solution of the dibromo compound **3** (8.00 g, 20.4 mmol) in 250 mL of anhydrous THF was placed in a N_2 atmosphere and cooled to 0 °C. A solution of

n-butyllithium (21.4 mL, 2.5 M in hexanes, 2.1 equiv) was added very quickly (addition time: 7 s) to the rapidly stirred solution using a syringe with a large gauge needle. The reaction mixture was stirred for 10 min, and solvent was removed. The residue was partitioned between AcOEt and H₂O, and the organic phase was dried with Ma₂SO₄ and evaporated to furnish the crude product, which was chromatographed on silica gel (petroleum ether 60-90 °C : ethyl acetate = 20:1) to afford the products **4** (2.53 g, 77%) as white crystals.

Yield 67%, White crystals, mp 61- 63 °C. ¹H-NMR (300 MHz, CDCl₃) δ : 6.84 (1H, s), 6.18 (1H, s), 4.44 (4H, t, *J* = 9.0 Hz), 2.98 (4H, t, *J* = 9.0 Hz). ¹³C-NMR (75 MHz, CDCl₃) δ : 160.33, 120.37, 118.21, 92.54, 72.14, 29.30.

2.4 Synthesis of compound 5

To a solution of the tetrahydrobenzo[1,2-*b*;4,5-*b*']difuran 4 (2.53 g, 15.6 mmol) in anhydrous THF (150 mL) was added *n*-butyllithium (10.0 mL, 2.5 M in hexanes, 1.6 equiv) by syringe at -78 °C in a N₂ atmosphere. The mixture was stirred for 30 min. The external cool bath was replaced by an ice/water bath and the reaction mixture was stirred at 0–5 °C. Upon completion of the reaction (4 h), DMF (3.6 mL, 46.8 mmol) was added and the mixture was stirred for a further 16 h while the temperature was allowed to increase slowly to room temperature. Then 0.5 M HCl (125 mL) was added at 0 °C to quench the reaction and the mixture was stirred 15 min. The resulting mixture was extracted with AcOEt (3×100 mL), the organic phases were combined and washed with H₂O (3×50 mL) until neutral pH and finally with brine (2×50 mL). The organic phase was dried over Na₂SO₄ and evaporated under reduced pressure to yield crude product, which was chromatographed on silica gel (petroleum ether 60-90 $^{\circ}$ C : ethyl acetate = 3:1) to afford the products 5 (1.98 g, 67%) as yellow powder.

Yield 67%, Yellow powder, mp 133-134 °C. ¹H-NMR (300 MHz, CDCl₃) δ : 10.10 (1H, s), 7.08 (1H, s), 4.63 (4H, t, J = 8.7 Hz), 3.02 (4H, t, J = 8.7 Hz). ¹³C-NMR (75 MHz, CDCl₃) δ : 186.94, 160.93, 126.84, 119.38, 106.71, 73.66, 28.28.

2.5 Synthesis of compound 6

To a stirred solution of tetrahydrobenzo[1,2-*b*;4,5-*b'*]difuran-8-carboxaldehyde **5** (1.98 g, 10.4 mmol) in MeOH (50 mL) at 0 °C was added NaBH₄ (0.40 g, 10.4 mmol) in small portions over a period of 20 minutes, and then at ambient temperature for 2 h. Reaction progress was monitored by TLC. A small amount of water was added and the mixture was stirred for 15 min before rotary evaporation. The solvent was evaporated under reduced pressure and the residue was chromatographed on silica gel (petroleum ether 60-90 °C : ethyl acetate = 1:1) to afford the products **6** (1.99 g, 99%) as white powder.

Yield 99%, White powder, mp 149-151 °C. ¹H-NMR (300 MHz, CDCl₃) δ : 6.81 (1H, s), 4.58 (2H, s), 4.50 (4H, t, J = 8.7 Hz), 3.01 (4H, t, J = 8.7 Hz), 2.38 (1H, s). ¹³C-NMR (75 MHz, CDCl₃) δ : 157.95, 119.67, 118.30, 106.45, 72.39, 55.77, 29.39.

2.6 Synthesis of compounds 8-11

To a solution of tetrahydrobenzo[1,2-*b*;4,5-*b*']difuran-8-methanol **6** (192 mg, 1 mmol) in dichloromethane (30 mL) was added methanesulfonyl chloride (1.5 mmol) and triethylamine (2 mmol) at 0 °C. The resulting mixture was stirred at room temperature for 2 h. After quenching the reaction with water (30 mL), the layers were separated. The organic phase was dried over anhydrous Na₂SO₄ and concentrated, and used for the next synthetic step. A mixture of the previous methanesulfonate and imidazole or substituted imidazole (3 mmol) was stirred in toluene (15 ml) at reflux for 8–12 h (monitored by TLC). After cooling to room temperature, the solvent was concentrated, and the residue was diluted with EtOAc (20 mL). The organic layer was washed with water (20 mL) and brine (20 mL), dried over anhydrous Na₂SO₄ and concentrated. The residue was purified by column chromatography (silica gel, petroleum ether 60–90 °C : ethyl acetate = $3:1\rightarrow1:1$) to afford **8–11** in 68–79% yield (two steps) as yellow or white powder.

Yield 73%. Yellow powder, mp 116-118 °C. IR v_{max} (cm⁻¹): 3434, 3108, 2972, 2925, 2852, 1616, 1499, 1454, 1323, 1235, 1061, 936, 819, 742, 646. ¹H-NMR (300 MHz, CDCl₃) δ : 7.60 (1H, s), 7.03 (1H, s), 6.70 (1H, s), 6.91 (1H, s), 4.98 (2H, s), 4.59 (4H,

t, J = 8.7 Hz), 3.10 (4H, t, J = 8.7 Hz). ¹³C-NMR (75 MHz, CDCl₃) δ : 158.40, 137.54, 128.79, 120.59, 119.42, 118.30, 102.18, 72.52, 39.84, 29.53. HRMS (ESI-TOF) m/z Calcd for C₁₄H₁₅N₂O₂ [M+1]⁺ 243.1128, found 243.1127.

Yield 68%. White powder, mp 133-134 °C. IR v_{max} (cm⁻¹): 3421, 2961, 2911, 2852, 1617, 1464, 1432, 1369, 1328, 1265, 1131, 1059, 974, 931, 757, 637. ¹H-NMR (300 MHz, CDCl₃) δ : 7.00 (1H, d, J = 1.2 Hz), 6.91 (1H, s), 6.81 (1H, d, J = 1.2 Hz), 4.88 (2H, s), 4.58 (4H, t, J = 8.7 Hz), 3.10 (4H, t, J = 8.7 Hz), 2.48 (3H, s). ¹³C-NMR (75 MHz, CDCl₃) δ : 158.39, 144.73, 126.51, 120.46, 119.92, 118.31, 102.30, 72.42, 39.13, 29.53, 12.95. HRMS (ESI-TOF) *m/z* Calcd for C₁₅H₁₇N₂O₂ [M+1]⁺ 257.1284, found 257.1280.

10

1-((2,3,5,6-tetrahydrobenzo[1,2-*b*;4,5-*b*]difuran-8-yl)methyl)-1*H*-benzo[*d*]imidazole

Yield 79%. Yellow powder, mp 179-181 °C. IR v_{max} (cm⁻¹): 3432, 3052, 2962, 2908, 1616, 1474, 1368, 1245, 1193, 1057, 1009, 936, 761. ¹H-NMR (300 MHz, CDCl₃) δ : 8.10 (1H, s), 7.74 (1H, dd, J = 7.2, 1.8 Hz), 7.70 (1H, dd, J = 7.2, 1.8 Hz), 7.28-7.19 (2H, m), 6.87 (1H, s), 5.21 (2H, s), 4.60 (4H, t, J = 8.7 Hz), 3.07 (4H, t, J = 8.7 Hz). ¹³C-NMR (75 MHz, CDCl₃) δ : 158.49, 144.17, 143.61, 133.91, 122.50, 121.67, 120.61, 119.87, 118.37, 110.37, 101.58, 72.59, 38.10, 29.48. HRMS (ESI-TOF) *m/z* Calcd for C₁₈H₁₇N₂O₂ [M+1]⁺ 293.1284, found 293.1279.

1-((2,3,5,6-tetrahydrobenzo[1,2-*b*;4,5-*b*]difuran-8-yl)methyl)-5,6-dimethyl-1*H*-benzo[*d*]imidazole

Yield 68%. Yellow powder, mp 184-185 °C. IR v_{max} (cm⁻¹): 3430, 3023, 2960, 1619, 1457, 1359, 1223, 1125, 1054, 937, 854, 763. ¹H-NMR (300 MHz, CDCl₃) δ : 7.98 (1H, s), 7.49 (1H, s), 7.45 (1H, s), 6.87 (1H, s), 5.15 (2H, s), 4.60 (4H, t, J = 8.7 Hz), 3.07 (4H, t, J = 8.7 Hz), 2.38 (3H, s), 2.34 (3H, s). ¹³C-NMR (75 MHz, CDCl₃) δ : 158.49, 143.43, 142.24, 132.42, 131.41, 130.41, 120.52, 119.86, 118.33, 110.62, 101.77, 72.52, 38.02, 29.53, 20.72, 20.21. HRMS (ESI-TOF) *m/z* Calcd for C₂₀H₂₁N₂O₂ [M+1]⁺ 321.1597, found 321.1596.

2.7 Synthesis of compounds 12-47

A mixture of tetrahydrobenzo[1,2-*b*;4,5-*b*']difuran–imidazole hybrids **8–11** (0.2 mmol) and phenacyl bromides or alkyl bromides (0.24 mmol) was stirred in toluene (5 ml) at reflux for 8-12 h. An insoluble substance was formed. After completion of the reaction as indicated by TLC, the precipitate was filtered through a small pad of Celite, and washed with toluene (3 \times 10 ml), then dried to afford imidazolium salts **12-47** in 64–99% yields.

1-((2,3,5,6-tetrahydrobenzo[1,2-*b*;4,5-*b*] difuran-8-yl)methyl)-3benzyl-1*H*-imidazol-3-ium bromide

Yield 92%. Brown oil, IR v_{max} (cm⁻¹): 3420, 3047, 2972, 2852, 1619, 1556, 1457, 1326, 1239, 1147, 1066, 933, 765, 718, 645. ¹H-NMR (300 MHz, CDCl₃) δ : 10.09 (1H, s), 7.55-7.51 (2H, m), 7.48 (1H, s), 7.36-7.34 (3H, m), 7.21 (1H, s), 6.97 (1H, s), 5.72 (2H, s), 5.24 (2H, s), 4.60 (4H, t, J = 8.7 Hz), 3.11 (4H, t, J = 8.7 Hz). ¹³C-NMR (75 MHz, CDCl₃) δ : 158.37, 136.36, 133.43, 129.24, 129.19, 122.24, 122.14, 121.19, 118.74, 98.28, 73.05, 53.24, 43.48, 29.36. HRMS (ESI-TOF) m/z Calcd for C₂₁H₂₁N₂O₂ [M-Br]⁺ 333.1597, found 333.1596.

Yield 83%. Brown oil, IR v_{max} (cm⁻¹): 3420, 3044, 2969, 2852, 1619, 1556, 1457, 1325, 1238, 1145, 1065, 934, 758, 642. ¹H-NMR (300 MHz, CDCl₃) δ : 10.09 (1H, s), 7.45 (2H, d, J = 1.6 Hz), 7.41 (2H, d, J = 8.1 Hz), 7.20 (1H, t, J = 1.6 Hz), 7.15 (2H, d, J = 8.1 Hz), 6.97 (1H, s), 5.66 (2H, s), 5.23 (2H, s), 4.60 (4H, t, J = 8.7 Hz), 3.11 (4H, t, J = 8.7 Hz), 2.32 (3H, s). ¹³C-NMR (75 MHz, CDCl₃) δ : 158.38, 139.23, 136.50, 130.37, 129.88, 129.17, 122.12, 121.86, 118.71, 98.28, 73.03, 53.06, 43.43, 29.36, 21.17. HRMS (ESI-TOF) *m/z* Calcd for C₂₂H₂₃N₂O₂ [M-Br]⁺ 347.1751, found 347.1754.

Yield 88%. Brown powder, mp 105-107 °C. IR v_{max} (cm⁻¹): 3434, 3371, 3067, 2971, 2848, 1618, 1555, 1462, 1325, 1242, 1145, 1064, 1014, 755, 654. ¹H-NMR (300 MHz, CDCl₃) δ : 10.12 (1H, s), 7.65-7.62 (1H, m), 7.54 (2H, d, J = 8.3 Hz), 7.47-7.44 (2H, m), 7.20 (1H, s), 6.97 (1H, s), 5.77 (2H, s), 5.21 (2H, s), 4.60 (4H, t, J = 8.1 Hz), 3.11 (4H, t, J = 8.1 Hz). ¹³C-NMR (75 MHz, CDCl₃) δ : 158.34, 136.50, 132.76, 132.32, 131.08, 123.47, 122.50, 122.20, 121.94, 118.74, 98.15, 73.07, 52.18, 43.39, 29.36. HRMS (ESI-TOF) *m/z* Calcd for C₂₁H₂₀N₂O₂Br [M-Br]⁺ 411.0702, found 411.0708.

Yield 95%. Yellow powder, mp 280-282 °C. IR v_{max} (cm⁻¹): 3417, 3084, 3023, 2967, 2860, 1610, 1522, 1466, 1342, 1239, 1149, 1066, 937, 871, 725, 642. ¹H-NMR (300 MHz, DMSO) δ : 9.41 (1H, s), 8.29 (2H, d, J = 8.7 Hz), 7.88 (1H, s), 7.70 (1H, s), 7.68 (2H, d, J = 8.7 Hz), 7.11 (1H, s), 5.66 (2H, s), 5.27 (2H, s), 4.59 (4H, t, J = 8.7 Hz), 3.11 (4H, t, J = 8.7 Hz). ¹³C-NMR (75 MHz, CDCl₃) δ : 157.83, 147.55, 142.23, 136.63, 129.34, 123.97, 123.12, 122.83, 121.84, 118.67, 98.69, 72.66, 50.90, 42.92, 28.80. HRMS (ESI-TOF) *m*/*z* Calcd for C₂₁H₂₀N₃O₄ [M-Br]⁺ 378.1448, found 378.1448.

Yield 90%. Brown powder, mp 159-161 °C. IR v_{max} (cm⁻¹): 3415, 3052, 2975, 2852, 1618, 1556, 1459, 1325, 1237, 1147, 1065, 924, 766, 731, 650. ¹H-NMR (300 MHz, CDCl₃) δ : 10.12 (1H, s), 8.02 (1H, s), 7.85-7.78 (3H, m), 7.59 (1H, d, J = 8.3 Hz), 7.52-7.47 (3H, m), 7.17 (1H, s), 6.94 (1H, s), 5.88 (2H, s), 5.57 (2H, s), 4.56 (4H, t, J = 8.7 Hz), 3.07 (4H, t, J = 8.7 Hz). ¹³C-NMR (75 MHz, CDCl₃) δ : 158.34, 136.60, 133.29, 133.12, 130.79, 129.26, 128.86, 128.16, 127.69, 126.89, 126.67, 126.04, 122.37, 122.12, 121.91, 118.71, 98.26, 73.02, 53.38, 43.46, 29.33. HRMS (ESI-TOF) *m/z* Calcd for C₂₅H₂₃N₂O₂ [M-Br]⁺ 383.1754, found 383.1756.

Yield 91%. White powder, mp 247-248 °C. IR v_{max} (cm⁻¹): 3418, 3037, 2966, 2844, 1696, 1614, 1557, 1461, 1338, 1231, 1155, 1064, 991, 931, 764,660. ¹H-NMR (300 MHz, CDCl₃) δ : 9.78 (1H, s), 8.15 (2H, d, J = 7.5 Hz), 7.63-7.61 (1H, m), 7.56-7.49 (3H, m), 7.31 (1H, s), 7.00 (1H, s), 6.57 (2H, s), 5.24 (2H, s), 4.68 (4H, t, J = 8.7 Hz), 3.15 (4H, t, J = 8.7 Hz). ¹³C-NMR (75 MHz, CDCl₃) δ : 190.95, 158.41, 137.46, 134.70, 133.53, 129.16, 128.78, 124.24, 122.35, 121.20, 118.83, 98.11, 73.19, 56.09, 43.58, 29.41. HRMS (ESI-TOF) *m/z* Calcd for C₂₂H₂₁N₂O₃ [M-Br]⁺ 361.1546, found 361.1545.

Yield 95%. White powder, mp 232-233 °C. IR v_{max} (cm⁻¹): 3414, 3072, 2964, 2905, 2852, 1700, 1583, 1463, 1397, 1334, 1232, 1158, 1066, 990, 825, 766, 627. ¹H-NMR (300 MHz, MeOD) δ : 9.01 (1H, s), 7.99 (2H, d, J = 8.7 Hz), 7.78 (2H, d, J = 8.7 Hz), 7.65 (1H, d, J = 1.5 Hz), 7.59 (1H, d, J = 1.5 Hz), 7.09 (1H, s), 5.98 (2H, s), 5.37 (2H, s), 4.67 (4H, t, J = 8.7 Hz), 3.17 (4H, t, J = 8.7 Hz). ¹³C-NMR (75 MHz, CDCl₃) δ : 191.21, 159.72, 138.89, 134.12, 133.51, 131.05, 130.60, 125.45, 123.41, 123.33, 120.39, 100.06, 74.23, 56.50, 44.37, 30.33. HRMS (ESI-TOF) *m/z* Calcd for C₂₂H₂₀N₂O₃Br [M-Br]⁺ 439.0651, found 439.0651.

Yield 95%. Yellow powder, mp 163-165 °C. IR v_{max} (cm⁻¹): 3426, 3075, 2965, 2848, 1687, 1604, 1510, 1461, 1323, 1244, 1163, 1065, 1022, 933, 834, 773, 633. ¹H-NMR (300 MHz, CDCl₃) δ : 9.65 (1H, s), 8.12 (2H, d, J = 8.7 Hz), 7.61 (1H, s), 7.30 (1H, d, J = 3.9 Hz), 6.98 (2H, d, J = 5.4 Hz), 6.95 (1H, s), 6.45 (2H, s), 5.23 (2H, s), 4.67 (4H, t, J = 8.7 Hz), 3.86 (3H, s), 3.14 (4H, t, J = 8.7 Hz). ¹³C-NMR (75 MHz, CDCl₃) δ : 189.13, 164.73, 158.38, 137.25, 131.25, 126.49, 124.38, 122.29, 121.15, 118.80, 114.37, 98.17, 73.15, 55.62, 43.49, 29.39. HRMS (ESI-TOF) *m/z* Calcd for C₂₃H₂₃N₂O₄ [M-Br]⁺ 391.1652, found 391.1655.

Yield 90%. White powder, mp 222-223 °C. IR v_{max} (cm⁻¹): 3410, 3036, 2970, 2902, 1694, 1621, 1562, 1464, 1331, 1231, 1159, 1067, 934, 819, 755, 631. ¹H-NMR (300 MHz, MeOD) δ : 9.07 (1H, s), 8.74 (1H, s), 8.12 (1H, d, J = 7.8 Hz), 8.07-7.96 (3H, m), 7.72-7.61 (4H, m), 7.08 (1H, s), 6.15 (2H, s), 5.36 (2H, s), 4.67 (4H, t, J = 8.7 Hz), 3.16 (4H, t, J = 8.7 Hz). ¹³C-NMR (75 MHz, CDCl₃) δ : 191.89, 159.72, 138.94, 137.62, 133.93, 132.43, 131.77, 130.90, 130.46, 130.02, 128.98, 128.38, 125.54, 124.26, 123.33, 120.39, 100.08, 74.25, 56.66, 44.38, 30.34. HRMS (ESI-TOF) *m/z* Calcd for C₂₆H₂₃N₂O₃ [M-Br]⁺ 411.1703, found 411.1705.

Yield 84%. Yellow powder, mp 199-201 °C. IR v_{max} (cm⁻¹): 3417, 3074, 2968, 2905, 1614, 1527, 1453, 1330, 1250, 1182, 1059, 1011, 942, 727, 641. ¹H-NMR (300 MHz, CDCl₃) δ : 7.82 (1H, d, J = 1.8 Hz), 7.42 (1H, d, J = 1.8 Hz), 7.40 (1H, d, J = 1.2 Hz), 7.38-7.32 (4H, m), 6.98 (1H, s), 5.67 (2H, s), 5.09 (2H, s), 4.60 (4H, t, J = 8.7 Hz), 3.12 (4H, t, J = 8.7 Hz), 2.88 (3H, s). ¹³C-NMR (75 MHz, CDCl₃) δ : 158.09, 143.92, 133.27, 129.20, 128.86, 128.46, 122.45, 122.03, 121.61, 118.77, 98.62, 73.01, 52.40, 42.33, 29.35, 10.92. HRMS (ESI-TOF) *m/z* Calcd for C₂₂H₂₃N₂O₂ [M-Br]⁺ 347.1754, found 347.1753.

1-((2,3,5,6-tetrahydrobenzo[1,2-b;4,5-b] difuran-8-yl)methyl)-3-(4-methylbenzyl)-2-methyl-1*H*-imidazol-3-ium bromide

Yield 97%. Yellow powder, mp 207-209 °C. IR v_{max} (cm⁻¹): 3416, 3048, 2961, 1619, 1522, 1457, 1361, 1255, 1177, 1060, 976, 931, 759, 672. ¹H-NMR (300 MHz, CDCl₃) δ : 7.69 (1H, s), 7.30-7.26 (3H, m), 7.15 (2H, d, *J* = 7.8 Hz), 6.98 (1H, s), 5.58 (2H, s), 5.09 (2H, s), 4.61 (4H, t, *J* = 8.7 Hz), 3.13 (4H, t, *J* = 8.7 Hz), 2.32 (3H, s). ¹³C-NMR (75 MHz, CDCl₃) δ : 158.13, 143.85, 138.90, 130.15, 129.89, 128.47, 122.23, 122.03, 121.57, 118.79, 98.69, 73.02, 52.34, 42.28, 29.37, 21.15, 10.91. HRMS (ESI-TOF) *m/z* Calcd for C₂₃H₂₅N₂O₂ [M-Br]⁺ 361.1910, found 361.1915.

Yield 79%. Yellow powder, mp 117-118 °C. IR v_{max} (cm⁻¹): 3453, 3023, 2971, 2893, 1619, 1516, 1454, 1342, 1250, 1174, 1060, 1010, 934, 753, 674. ¹H-NMR (300 MHz, CDCl₃) δ : 7.91 (1H, d, J = 1.8 Hz), 7.46 (2H, d, J = 8.4 Hz), 7.39 (2H, d, J = 8.4 Hz), 7.29 (1H, d, J = 1.8 Hz), 6.98 (1H, s), 5.73 (2H, s), 5.08 (2H, s), 4.60 (4H, t, J = 8.7 Hz), 3.13 (4H, t, J = 8.7 Hz), 2.88 (3H, s). ¹³C-NMR (75 MHz, CDCl₃) δ : 158.10, 143.99, 132.48, 132.28, 130.47, 123.04, 122.44, 122.07, 121.65, 118.80, 98.57, 73.04, 51.55, 42.35, 29.37, 10.94. HRMS (ESI-TOF) *m/z* Calcd for C₂₂H₂₂N₂O₂Br [M-Br]⁺ 425.0859, found 425.0852.

Yield 97%. Yellow powder, mp 199-201 °C. IR v_{max} (cm⁻¹): 3424, 3050, 2959, 2913, 1611, 1520, 1458, 1345, 1254, 1181, 1061, 932, 857, 771, 734. ¹H-NMR (300 MHz, CDCl₃) δ : 8.13 (2H, d, J = 8.7 Hz), 8.12 (1H, s), 7.75 (2H, d, J = 8.7 Hz), 7.34 (1H, d, J = 1.8 Hz), 6.99 (1H, s), 6.06 (2H, s), 5.09 (2H, s), 4.60 (4H, t, J = 8.7 Hz), 3.13 (4H, t, J = 8.7 Hz), 2.90 (3H, s). ¹³C-NMR (75 MHz, CDCl₃) δ : 158.09, 147.90, 144.30, 140.76, 129.60, 124.15, 122.79, 122.16, 121.91, 118.84, 98.43, 73.08, 51.13, 42.49, 29.36, 10.95. HRMS (ESI-TOF) *m/z* Calcd for C₂₂H₂₂N₃O₄ [M-Br]⁺ 392.1604, found 392.1604.

Yield 91%. Yellow powder, mp 115-117 °C. IR v_{max} (cm⁻¹): 3425, 3048, 2961, 1618, 1522, 1456, 1330, 1252, 1181, 1060, 976, 931, 765, 661. ¹H-NMR (300 MHz, CDCl₃) δ : 7.90 (1H, s), 7.85-7.77 (4H, m), 7.50-7.46 (3H, m), 7.29 (1H, s), 6.96 (1H, s), 5.82 (2H, s), 5.06 (2H, s), 4.58 (4H, t, J = 8.7 Hz), 3.10 (4H, t, J = 8.7 Hz), 2.88 (3H, s). ¹³C-NMR (75 MHz, CDCl₃) δ : 158.12, 144.06, 133.12, 130.63, 129.22, 128.13, 127.98, 127.67, 126.79, 126.69, 125.56, 122.44, 122.01, 121.62, 118.77, 98.67, 73.00, 52.65, 42.30, 29.36, 10.94. HRMS (ESI-TOF) *m/z* Calcd for C₂₆H₂₅N₂O₂ [M-Br]⁺ 397.1910, found 397.1909.

1-((2,3,5,6-tetrahydrobenzo[1,2-b;4,5-b] difuran-8-yl)methyl)-3-(2-oxo-2-phenylethyl)-2-methyl-1*H*imidazol-3-ium bromide

Yield 98%. White powder, mp 232-234 °C. IR v_{max} (cm⁻¹): 3427, 3060, 2902, 1696, 1615, 1530, 1454, 1333, 1234, 1185, 1060, 996, 936, 761, 687. ¹H-NMR (300 MHz, CDCl₃) δ : 8.22 (2H, d, J = 8.4 Hz) 7.79 (1H, s), 7.62-7.60 (1H, m), 7.53-7.48 (2H, m), 7.35 (1H, s), 7.01 (1H, s), 6.55 (2H, s), 5.12 (2H, s), 4.65 (4H, t, *J* = 8.7 Hz), 3.16 (4H, t, *J* = 8.7 Hz), 2.78 (3H, s). ¹³C-NMR (75 MHz, CDCl₃) δ : 191.03, 158.15, 145.35, 134.67, 133.45, 129.10, 128.99, 123.44, 122.21, 121.19, 118.86, 98.44, 73.08, 56.48, 42.29, 29.40, 10.57. HRMS (ESI-TOF) *m/z* Calcd for C₂₃H₂₃N₂O₃ [M-Br]⁺ 375.1703, found 375.1705.

Yield 79%. Yellow powder, mp 227-229 °C. IR v_{max} (cm⁻¹): 3441, 3070, 2962, 2905, 1696, 1622, 1584, 1528, 1461, 1396, 1332, 1233, 1180, 1064, 993, 933, 826, 763. ¹H-NMR (300 MHz, CDCl₃) δ : 8.14 (2H, d, J = 8.4 Hz), 7.82 (1H, d, J = 1.5 Hz), 7.63 (2H, d, J = 8.4 Hz), 7.34 (1H, d, J = 1.5 Hz), 7.01 (1H, s), 6.62 (2H, s), 5.12 (2H, s), 4.65 (4H, t, J = 8.7 Hz), 3.16 (4H, t, J = 8.7 Hz), 2.79 (3H, s). ¹³C-NMR (75 MHz, CDCl₃) δ : 190.45, 158.15, 145.41, 132.39, 132.26, 130.60, 130.07, 123.40, 122.23, 121.21, 118.86, 98.40, 73.10, 56.45, 42.32, 29.40, 10.60. HRMS (ESI-TOF) *m/z* Calcd for C₂₃H₂₂N₂O₃Br [M-Br]⁺ 453.0808, found 453.0811.

Yield 86%. White powder, mp 209-210 °C. IR v_{max} (cm⁻¹): 3437, 3039, 2950, 2908, 1679, 1602, 1514, 1455, 1326, 1242, 1178, 1063, 1011, 935, 756. ¹H-NMR (300 MHz, CDCl₃) δ : 8.23 (2H, d, J = 8.7 Hz), 7.70 (1H, d, J = 1.8 Hz), 7.34 (1H, d, J = 1.8 Hz), 7.30 (1H, s), 7.00 (1H, s), 6.98 (2H, d, J = 8.7 Hz), 6.44 (2H, s), 5.10 (2H, s), 4.65 (4H, t, J = 8.7 Hz), 3.87 (3H, s), 3.16 (4H, t, J = 8.7 Hz), 2.78 (3H, s). ¹³C-NMR (75 MHz, CDCl₃) δ : 189.19, 164.79, 158.14, 145.31, 131.53, 126.40, 123.38, 122.20, 121.13, 118.85, 114.38, 98.45, 73.07, 56.07, 55.62, 42.25, 29.39, 10.52. HRMS (ESI-TOF) *m/z* Calcd for C₂₄H₂₅N₂O₄ [M-Br]⁺ 405.1808, found 405.1812.

Yield 93%. Yellow powder, mp 146-148 °C. IR v_{max} (cm⁻¹): 3399, 3054, 2954, 2910, 1689, 1621, 1526, 1460, 1366, 1262, 1182, 1061, 933, 822, 750. ¹H-NMR (300 MHz, CDCl₃) δ : 9.08 (1H, s), 8.13 (1H, d, J = 6.6 Hz), 8.02 (1H, d, J = 7.8 Hz), 7.83-7.77 (3H, m), 7.57-7.55 (1H, m), 7.50-7.48 (1H, m), 7.32 (1H, s), 6.99 (1H, s), 6.60 (2H, s), 5.08 (2H, s), 4.63 (4H, t, J = 8.1 Hz), 3.13 (4H, t, J = 8.1 Hz), 2.78 (3H, s). ¹³C-NMR (75 MHz, CDCl₃) δ : 191.02, 158.13, 145.30, 136.08, 132.47, 132.17, 130.65, 129.21, 128.74, 127.51, 126.89, 123.42, 123.31, 122.15, 121.20, 118.82, 98.45, 73.06, 56.25, 42.26, 29.37, 10.55. HRMS (ESI-TOF) *m/z* Calcd for C₂₇H₂₅N₂O₃ [M-Br]⁺ 425.1859, found 425.1868.

1-((2,3,5,6-tetrahydrobenzo[1,2-b;4,5-b] difuran-8-yl)methyl)-3-butyl-1*H*benzo[d]imidazol-3-ium iodide

Yield 77%. White powder, mp 215-217 °C. IR v_{max} (cm⁻¹): 3434, 3055, 2947, 1621, 1560, 1459, 1330, 1239, 1191, 1066, 936, 766. ¹H-NMR (300 MHz, CDCl₃) δ : 10.54 (1H, s), 7.90-7.86 (1H, m), 7.75-7.71 (1H, m), 7.65-7.58 (2H, m), 6.96 (1H, s), 5.60 (2H, s), 4.75 (2H, t, *J* = 7.5 Hz), 4.68 (4H, t, *J* = 8.7 Hz), 3.12 (4H, t, *J* = 8.7 Hz), 2.07-1.97 (2H, m), 1.50-1.40 (2H, m), 0.99 (3H, t, *J* = 7.5 Hz). ¹³C-NMR (75 MHz, CDCl₃) δ : 158.29, 142.19, 131.20, 130.96, 127.21, 127.08, 121.95, 118.79, 113.55, 113.03, 98.06, 73.24, 47.48, 41.47, 31.26, 29.32, 19.55, 13.55. HRMS (ESI-TOF) *m/z* Calcd for C₂₂H₂₅N₂O₂ [M-I]⁺ 349.1910, found 349.1910.

Yield 85%. White powder, mp 234-236 °C. IR v_{max} (cm⁻¹): 3453, 3108, 2965, 1616, 1555, 1463, 1371, 1330, 1234, 1197, 1130, 1065, 1014, 935, 756, 704. ¹H-NMR (300 MHz, MeOD) δ : 9.79 (1H, s), 7.95 (1H, dd, J = 1.5, 2.1 Hz), 7.88 (1H, dd, J = 2.1, 1.8 Hz), 7.67-7.58 (2H, m), 7.50-7.40 (5H, m), 7.03 (1H, s), 5.81 (2H, s), 5.62 (2H, s), 4.64 (4H, t, J = 8.7 Hz), 3.11 (4H, t, J = 8.7 Hz). ¹³C-NMR (75 MHz, MeOD) δ : 159.50, 143.75, 134.93, 132.75, 132.64, 130.45, 130.29, 129.30, 128.34, 128.27, 123.13, 120.50, 114.92, 114.69, 99.72, 74.37, 51.78, 42.41, 30.21. HRMS (ESI-TOF) *m/z* Calcd for C₂₅H₂₃N₂O₂ [M-Br]⁺ 383.1754, found 383.1753.

1-((2,3,5,6-tetrahydrobenzo[1,2-b;4,5-b] difuran-8-yl)methyl)-3-(4-methylbenzyl)-1*H*-benzo[*d*]imidazol-3-ium bromide

Yield 77%. Yellow powder, mp 119-122 °C. IR v_{max} (cm⁻¹): 3403, 3112, 3015, 2967, 1615, 1555, 1460, 1367, 1329, 1230, 1192, 1126, 1063, 1013, 932, 763. ¹H-NMR (300 MHz, CDCl₃) δ : 10.85 (1H, s), 7.74 (1H, d, J = 7.2 Hz), 7.58 (1H, dd, J = 8.4, 1.5 Hz), 7.50-7.42 (2H, m), 7.34 (2H, d, J = 7.5 Hz), 7.08 (2H, d, J = 7.5 Hz), 6.88 (1H, s), 5.90 (2H, s), 5.52 (2H, s), 4.58 (4H, t, J = 8.7 Hz), 3.03 (4H, t, J = 8.7 Hz), 2.23 (3H, s). ¹³C-NMR (75 MHz, CDCl₃) δ : 158.27, 143.05, 138.93, 131.12, 130.20, 129.79, 128.29, 126.99, 126.89, 121.85, 118.77, 113.60, 113.40, 98.17, 73.17, 50.97, 41.47, 29.29, 21.13. HRMS (ESI-TOF) *m/z* Calcd for C₂₆H₂₅N₂O₂ [M-Br]⁺ 397.1910, found 397.1912.

Yield 70%. Yellow powder, mp 138-141 °C. IR v_{max} (cm⁻¹): 3414, 3019, 2927, 1617, 1557, 1449, 1371, 1333, 1234, 1190, 1126, 1065, 1012, 930, 756. ¹H-NMR (300 MHz, CDCl₃) δ : 10.99 (1H, s), 7.77 (1H, dd, J = 8.4, 1.5 Hz), 7.68 (1H, dd, J = 8.4, 1.5 Hz), 7.57-7.45 (4H, m), 7.37 (2H, d, J = 8.1 Hz), 6.90 (1H, s), 6.06 (2H, s), 5.51 (2H, s), 4.60 (4H, t, J = 8.7 Hz), 3.05 (4H, t, J = 8.7 Hz). ¹³C-NMR (75 MHz, CDCl₃) δ : 158.27, 143.02, 132.50, 132.21, 131.03, 130.26, 127.08, 123.10, 121.94, 118.80, 113.67, 113.46, 98.01, 73.22, 50.25, 41.51, 29.30. HRMS (ESI-TOF) *m/z* Calcd for C₂₅H₂₂N₂O₂Br [M-Br]⁺ 461.0859, found 461.0858.

Yield 64%. White powder, mp 145-147 °C. IR v_{max} (cm⁻¹): 3408, 3111, 2963, 1617, 1558, 1462, 1371, 1332, 1236, 1192, 1131, 1013, 930, 756. ¹H-NMR (300 MHz, CDCl₃) δ : 11.03 (1H, s), 7.99 (1H, s), 7.77-7.65 (5H, m), 7.55 (1H, d, J = 8.1 Hz), 7.43-7.40 (4H, m), 6.86 (1H, s), 6.17 (2H, s), 5.50 (2H, s), 4.55 (4H, t, J = 8.1 Hz), 3.01 (4H, t, J = 8.1 Hz). ¹³C-NMR (75 MHz, CDCl₃) δ : 158.27, 143.22, 133.15, 133.06, 131.17, 131.02, 130.71, 129.14, 128.03, 127.95, 127.67, 126.94, 126.75, 126.64, 125.37, 121.86, 118.74, 113.72, 113.33, 98.05, 73.16, 51.25, 41.48, 29.28. HRMS (ESI-TOF) *m/z* Calcd for C₂₉H₂₅N₂O₂ [M-Br]⁺ 433.1910, found 433.1910.

Yield 95%. Yellow powder, mp 193-195 °C. IR v_{max} (cm⁻¹): 3400, 3019, 2948, 1695, 1615, 1561, 1448, 1350, 1232, 1066, 980, 935, 757, 689. ¹H-NMR (300 MHz, CDCl₃) δ : 10.48 (1H, s), 8.21 (1H, s), 8.19 (1H, s), 7.94 (1H, d, J = 7.5 Hz), 7.67-7.51 (6H, m), 6.97 (1H, s), 6.86 (2H, s), 5.52 (2H, s), 4.72 (4H, t, J = 8.7 Hz), 3.13 (4H, t, J = 8.7 Hz). ¹³C-NMR (75 MHz, CDCl₃) δ : 190.54, 143.57, 134.67, 133.66, 132.21, 130.78, 129.15, 128.81, 127.06, 126.99, 122.17, 118.85, 113.36, 113.20, 97.69, 73.34, 54.12, 41.38, 29.35. HRMS (ESI-TOF) *m/z* Calcd for C₂₆H₂₃N₂O₃ [M-Br]⁺ 411.1703, found 411.1707.

Yield 88%. White powder, mp 227-229 °C. IR v_{max} (cm⁻¹): 3419, 3015, 2959, 1698, 1626, 1567, 1463, 1353, 1229, 1067, 984, 758. ¹H-NMR (300 MHz, DMSO) δ : 9.72 (1H, s), 8.11-8.00 (4H, m), 7.90 (2H, d, J = 8.7 Hz), 7.75-7.64 (2H, m), 7.10 (1H, s), 6.47 (2H, s), 5.65 (2H, s), 4.64 (4H, t, J = 8.7 Hz), 3.10 (4H, t, J = 8.7 Hz). ¹³C-NMR (75 MHz, DMSO) δ : 190.65, 157.94, 143.47, 132.82, 132.10, 131.93, 130.34, 128.63, 126.77, 121.96, 118.74, 114.09, 113.32, 98.12, 72.86, 53.33, 40.88, 28.77. HRMS (ESI-TOF) *m/z* Calcd for C₂₆H₂₂N₂O₃Br [M-Br]⁺ 489.0808, found 489.0805.

Yield 96%. White powder, mp 232-233 °C. IR v_{max} (cm⁻¹): 3417, 3015, 2958, 1687, 1603, 1563, 1461, 1350, 1240, 1177, 1066, 1018, 980, 834, 760. ¹H-NMR (300 MHz, CDCl₃) δ : 10.40 (1H, s), 8.22 (2H, d, J = 8.7 Hz), 7.93 (1H, dd, J = 6.6, 2.2 Hz), 7.61-7.56 (3H, m), 7.01 (2H, d, J = 8.7 Hz), 6.97 (1H, s), 6.77 (2H, s), 5.51 (2H, s), 4.72 (4H, t, J = 8.7 Hz), 3.89 (3H, s), 3.13 (4H, t, J = 8.7 Hz). ¹³C-NMR (75 MHz, CDCl₃) δ : 188.74, 164.78, 158.43, 143.47, 132.32, 131.32, 130.79, 127.00, 126.92, 126.64, 122.15, 118.84, 114.41, 113.37, 113.29, 97.72, 73.33, 55.65, 53.75, 41.33, 29.35. HRMS (ESI-TOF) *m/z* Calcd for C₂₇H₂₅N₂O₄ [M-Br]⁺ 441.1808, found 441.1808.

Yield 86%. Yellow powder, mp 188-190 °C. IR v_{max} (cm⁻¹): 3415, 3036, 2962, 2893, 1690, 1620, 1559, 1463, 1362, 1231, 1188, 1059, 939, 820, 759. ¹H-NMR (300 MHz, DMSO) δ : 9.81 (1H, s), 8.97 (1H, s), 8.23 (1H, d, J = 7.5 Hz), 8.15-8.01 (5H, m), 7.77-7.64 (4H, m), 7.09 (1H, s), 6.65 (2H, s), 5.66 (2H, s), 4.65 (4H, t, J = 8.4 Hz), 3.10 (4H, t, J = 8.4 Hz). ¹³C-NMR (75 MHz, DMSO) δ : 191.14, 157.95, 143.57, 135.53, 132.01, 131.04, 130.91, 130.38, 129.66, 129.30, 128.64, 127.84, 127.34, 126.78, 123.31, 121.94, 118.74, 114.10, 113.31, 98.13, 72.87, 53.43, 40.91, 28.79. HRMS (ESI-TOF) *m/z* Calcd for C₃₀H₂₅N₂O₃ [M-Br]⁺ 461.1859, found 461.1860.

Yield 75%. Yellow powder, mp 206-207 °C. IR v_{max} (cm⁻¹): 3428, 3116, 2956, 1619, 1558, 1462, 1341, 1240, 1135, 1065, 1015, 939, 865, 765. ¹H-NMR (300 MHz, CDCl₃) δ : 10.23 (1H, s), 7.57 (1H, s), 7.41 (1H, s), 6.91(1H, s), 5.46 (2H, s), 4.62 (4H, t, *J* = 8.7 Hz), 3.07 (4H, t, *J* = 8.7 Hz), 2.38 (3H, s), 2.37 (3H, s) 1.98-1.89 (2H, m), 1.45-1.33 (2H,m), 0.93 (3H, t, *J* = 7.2 Hz). ¹³C-NMR (75 MHz, CDCl₃) δ : 18.32, 140.99, 137.09, 129.76, 129.53, 121.88, 118.77, 113.32, 112.58, 98.27, 73.17, 47.31,

41.21, 31.29, 29.36, 20.87, 20.66, 19.54, 13.58. HRMS (ESI-TOF) m/z Calcd for $C_{24}H_{29}N_2O_2$ [M-I]⁺ 377.2223, found 377.2221.

1-((2,3,5,6-tetrahydrobenzo[1,2-*b*;4,5-*b*] difuran-8-yl)methyl)-3benzyl-5,6-dimethyl-1*H*-benzo[*d*]imidazol-3-ium bromide

Yield 96%. White powder, mp 229-230 °C. IR v_{max} (cm⁻¹): 3411, 3113, 2959, 1619, 1557, 1455, 1344, 1235, 1130, 1064, 936, 859, 710. ¹H-NMR (300 MHz, CDCl₃) δ : 10.85 (1H, s), 7.55 (1H, s), 7.49-7.47 (2H, d, J = 6.0 Hz), 7.35-7.32 (4H, m), 6.94 (1H, s), 5.97 (2H, s), 5.51 (2H, s), 4.63 (4H, t, J = 8.7 Hz), 3.10 (4H, t, J = 8.7 Hz), 2.36 (3H, s), 2.34 (3H, s). ¹³C-NMR (75 MHz, CDCl₃) δ : 158.27, 142.06, 136.96, 133.59, 129.70, 129.55, 129.08, 128.80, 128.13, 121.80, 118.73, 113.19, 113.03, 98.27, 73.09, 50.75, 41.24, 29.31, 20.81, 20.62. HRMS (ESI-TOF) *m/z* Calcd for C₂₇H₂₇N₂O₂ [M-Br]⁺ 411.2067, found 411.2068.

Yield 83%. Yellow powder, mp 232-234 °C. IR v_{max} (cm⁻¹): 3403, 3105, 2965, 1619, 1554, 1460, 1344, 1238, 1195, 1128, 1064, 939, 863, 763. ¹H-NMR (300 MHz, CDCl₃) δ : 10.76 (1H, s), 7.48 (1H, s), 7.32-7.29 (3H, m), 7.07 (2H, d, *J* = 7.8 Hz), 6.88 (1H, s), 5.84 (2H, s), 5.45 (2H, s), 4.58 (4H, t, *J* = 8.7 Hz), 3.04 (4H, t, *J* = 8.7

Hz), 2.30 (3H, s), 2.28 (3H, s), 2.23 (3H, s). ¹³C-NMR (75 MHz, CDCl₃) δ : 158.28, 141.99, 138.72, 136.92, 130.53, 129.71, 129.60, 128.10, 121.77, 118.72, 113.16, 113.07, 98.31, 73.08, 50.63, 41.21, 29.31, 21.13, 20.80, 20.62. HRMS (ESI-TOF) *m/z* Calcd for C₂₈H₂₉N₂O₂ [M-Br]⁺ 425.2223, found 425.2223.

Yield 93%. White powder, mp 230-231 °C. IR v_{max} (cm⁻¹): 3403, 3105, 2964, 1619, 1554, 1460, 1346, 1237, 1193, 1128, 1064, 1014, 938, 854, 730. ¹H-NMR (300 MHz, CDCl₃) δ : 10.81 (1H, s), 7.50 (1H, s), 7.43-7.35 (5H, m), 6.89 (1H, s), 5.98 (2H, s), 5.43 (2H, s), 4.59 (4H, t, *J* = 8.7 Hz), 3.05 (4H, t, *J* = 8.7 Hz), 2.31 (3H, s), 2.30 (3H, s). ¹³C-NMR (75 MHz, CDCl₃) δ : 158.28, 141.86, 137.21, 137.11, 132.80, 132.13, 130.09, 129.58, 129.51, 122.92, 121.88, 118.76, 113.20, 113.12, 98.12, 73.14, 49.94, 41.27, 29.32, 20.81, 20.62. HRMS (ESI-TOF) *m/z* Calcd for C₂₇H₂₆N₂O₂Br [M-Br]⁺ 489.1172, found 489.1174.

Yield 70%. White powder, mp 161-163 °C. IR v_{max} (cm⁻¹): 3399, 3116, 2960, 1618, 1557, 1455, 1343, 1237, 1130, 1064, 1017, 934, 858, 762. ¹H-NMR (300 MHz,

CDCl₃) δ : 10.84 (1H, s), 7.92 (1H, s), 7.79-7.72 (3H, m), 7.52-7.48 (2H, m), 7.44-7.41 (2H, m), 7.34 (1H, s), 6.89 (1H, s), 6.11 (2H, s), 5.47 (2H, s), 4.57 (4H, t, *J* = 8.7 Hz), 3.04 (4H, t, *J* = 8.7 Hz), 2.29 (3H, s), 2.26 (3H, s). ¹³C-NMR (75 MHz, CDCl₃) δ : 158.34, 142.15, 137.05, 136.97, 133.15, 131.07, 129.80, 129.62, 129.12, 128.04, 127.72, 127.60, 126.69, 126.63, 125.26, 121.84, 118.78, 113.17, 98.34, 73.14, 51.05, 41.31, 29.36, 20.82, 20.63. HRMS (ESI-TOF) *m/z* Calcd for C₃₁H₂₉N₂O₂ [M-Br]⁺ 461.2223, found 461.2220.

Yield 99%. Yellow powder, mp 209-211 °C. IR v_{max} (cm⁻¹): 3368, 3105, 2968, 1690, 1611, 1558, 1457, 1335, 1238, 1132, 1067, 1007, 933,868, 730, 634. ¹H-NMR (300 MHz, CDCl₃) δ : 10.24 (1H, s), 8.16 (2H, d, J = 7.2 Hz), 7.63 (1H, s), 7.60-7.57 (1H, m), 7.51-7.46 (2H, m), 7.20 (1H, s), 6.92 (1H, s), 6.75 (2H, s), 5.38 (2H, s), 4.67 (4H, t, J = 8.7 Hz), 3.08 (4H, t, J = 8.7 Hz), 2.37 (3H, s), 2.31 (3H, s). ¹³C-NMR (75 MHz, CDCl₃) δ : 190.68, 158.41, 142.18, 137.24, 136.99, 134.57, 133.74, 130.73, 129.28, 129.11, 128.81, 122.10, 118.82, 113.14, 112.76, 97.86, 73.27, 54.00, 41.14, 29.37, 20.83, 20.60. HRMS (ESI-TOF) *m/z* Calcd for C₂₈H₂₇N₂O₃ [M-Br]⁺ 439.2016, found 439.2016.

Yield 93%. Yellow powder, mp 242-244 °C. IR v_{max} (cm⁻¹): 3389, 3117, 2964, 1698, 1626, 1564, 1461, 1393, 1344, 1231, 1133, 1065, 1007, 950, 824, 767. ¹H-NMR (300 MHz, DMSO) δ : 9.55 (1H, s), 8.05 (2H, d, J = 8.4 Hz), 7.89 (2H, d, J = 8.4 Hz), 7.88 (1H, s), 7.78 (1H, s), 7.10 (1H, s), 6.39 (2H, s), 5.56 (2H, s), 4.64 (4H, t, J = 8.7 Hz), 3.11 (4H, t, J = 8.7 Hz), 2.41 (3H, s), 2.35 (3H, s). ¹³C-NMR (75 MHz, DMSO) δ : 190.64, 157.92, 142.16, 136.52, 136.30, 132.82, 132.08, 130.44, 130.31, 128.84, 128.60, 121.94, 118.75, 113.54, 112.85, 98.21, 72.83, 53.20, 40.68, 28.79, 20.62, 19.91. HRMS (ESI-TOF) *m/z* Calcd for C₂₈H₂₆N₂O₃Br [M-Br]⁺ 517.1121, found 517.1125.

Yield 98%. White powder, mp 242-243 °C. IR v_{max} (cm⁻¹): 3397, 3113, 2962, 1687, 1602, 1560, 1459, 1347, 1241, 1178, 1065, 1017, 951, 835, 771. ¹H-NMR (300 MHz, CDCl₃) δ : 10.13 (1H, s), 8.14 (2H, d, J = 8.7 Hz), 7.60 (1H, s), 7.24 (1H, s), 6.93 (2H, d, J = 8.4 Hz), 6.91 (1H, s), 6.64 (2H, s), 5.36 (2H, s), 4.65 (4H, t, J = 8.7 Hz), 3.81 (3H, s), 3.06 (4H, t, J = 8.7 Hz), 2.35 (3H, s), 2.29 (3H, s). ¹³C-NMR (75 MHz, CDCl₃) δ : 188.88, 164.63, 158.36, 142.03, 137.14, 136.88, 131.27, 130.77, 129.21, 126.69, 122.03, 118.77, 114.30, 113.00, 97.88, 73.21, 55.61, 53.60, 41.05, 29.33, 20.79, 20.51. HRMS (ESI-TOF) *m/z* Calcd for C₂₉H₂₉N₂O₄ [M-Br]⁺ 469.2121, found 469.2122.

Yield 89%. Yellow powder, mp 169-171 °C. IR v_{max} (cm⁻¹): 3385, 3117, 2965, 1686, 1623, 1558, 1463, 1357, 1235, 1189, 1128, 1063, 1019, 935, 824, 760. ¹H-NMR (300 MHz, DMSO) δ : 9.63 (1H, s), 8.95 (1H, s), 8.23 (1H, d, J = 7.5 Hz), 8.14 (1H, d, J = 8.7 Hz), 8.07 (2H, d, J = 6.3 Hz), 7.92 (1H, s), 7.78-7.68 (3H, m), 7.10 (1H, s), 6.56 (2H, s), 5.58 (2H, s), 4.66 (4H, t, J = 8.7 Hz), 3.11 (4H, t, J = 8.7 Hz), 2.41 (3H, s), 2.34 (3H, s). ¹³C-NMR (75 MHz, DMSO) δ : 191.67, 158.44, 142.76, 137.05, 136.80, 136.02, 132.52, 131.54, 131.35, 131.01, 130.16, 129.81, 129.37, 129.14, 128.34, 127.85, 123.81, 122.45, 119.26, 114.05, 113.36, 98.74, 73.34, 53.78, 41.20, 29.30, 20.77, 20.40. HRMS (ESI-TOF) *m/z* Calcd for C₃₂H₂₉N₂O₃ [M-Br]⁺ 489.2172, found 489.2170.

3. X-ray crystal structure of compound 20

Fig. 1 X-ray crystal structure of compound 20.

data_20

_audit_creation_method _chemical_formula_sum chemical_formula_weight SHELXL-97 'C26 H23 Br N2 O3' 491.37

loop_

_atom_type_symbol

_atom_type_description

_atom_type_scat_dispersion_real

_atom_type_scat_dispersion_imag

_atom_type_scat_source

'C' 'C' 0.0033 0.0016

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'H' 'H' 0.0000 0.0000

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'N' 'N' 0.0061 0.0033

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'O' 'O' 0.0106 0.0060

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

'Br' 'Br' -0.2901 2.4595

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting Triclinic

_symmetry_space_group_name_H-M P-1

loop_

_symmetry_equiv_pos_as_xyz

'x, y, z'

'-x, -y, -z'

- _cell_length_a 9.8296(15)
- _cell_length_b 10.2016(16)
- _cell_length_c 12.6394(19)
- _cell_angle_alpha 78.083(2)
- _cell_angle_beta 70.581(2)
- _cell_angle_gamma 70.890(2)
- _cell_volume 1122.7(3)
- _cell_formula_units_Z 2
- _cell_measurement_temperature 293(2)
- _cell_measurement_reflns_used 1486
- _cell_measurement_theta_min 2.29
- _cell_measurement_theta_max 20.61
- _exptl_crystal_description block
- _exptl_crystal_colour colourless
- _exptl_crystal_size_max 0.29
- _exptl_crystal_size_mid 0.23
- _exptl_crystal_size_min 0.14
- _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.454
 - S35

_exptl_crystal_density_method	'not measured'
_exptl_crystal_F_000	504
_exptl_absorpt_coefficient_mu	1.862
_exptl_absorpt_correction_type	multi-scan
_exptl_absorpt_correction_T_min	0.2769
_exptl_absorpt_correction_T_max	1.0000
_exptl_absorpt_process_details	sadabs
_exptl_special_details ?	
_diffrn_ambient_temperature	293(2)
_diffrn_radiation_wavelength	0.71073
_diffrn_radiation_type	MoK\a
_diffrn_radiation_source	'fine-focus sealed tube'
_diffrn_radiation_monochromator	graphite
_diffrn_measurement_device_type	'CCD area detector'
_diffrn_measurement_method	'phi and omega scans'
_diffrn_reflns_number	8581
_diffrn_reflns_av_R_equivalents	0.0757
_diffrn_reflns_av_sigmal/netI	0.2026
_diffrn_reflns_limit_h_min	-11
_diffrn_reflns_limit_h_max	11
_diffrn_reflns_limit_k_min	-12
_diffrn_reflns_limit_k_max	12
---------------------------------	-------------------------------
_diffrn_reflns_limit_l_min	-15
_diffrn_reflns_limit_l_max	15
_diffrn_reflns_theta_min	2.13
_diffrn_reflns_theta_max	25.00
_reflns_number_total	3900
_reflns_number_gt	2390
_reflns_threshold_expression	>2sigma(I)
_computing_data_collection	'Bruker apex II'
_computing_cell_refinement	'Bruker apex II'
_computing_data_reduction	'Bruker SAINT'
_computing_structure_solution	'SHELXS-97 (Sheldrick, 1990)'
_computing_structure_refinement	'SHELXL-97 (Sheldrick, 1997)'
_computing_molecular_graphics	'Bruker SHELXTL'
_computing_publication_material	'Bruker SHELXTL'

_refine_special_details

Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of $F^2^> 2 \operatorname{sigma}(F^2^>)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

refine	ls	structure	factor	coef	Fsqd
				_	1

	refine	ls	matrix	type	full
--	--------	----	--------	------	------

_refine_ls_weighting_scheme calc

_refine_ls_weighting_details

'calc w=1/[\s^2^(Fo^2^)+(0.0000P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3'

atom	sites	solution	primary	direct

atom	sites	solution	secondary	difmap
				1

- _atom_sites_solution_hydrogens geom
- _refine_ls_hydrogen_treatment mixed
- _refine_ls_extinction_method SHELXL
- _refine_ls_extinction_coef 0.000(3)

_refine_ls_extinction_expression

'Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^'

_refine_ls_number_reflns	3900
_refine_ls_number_parameters	290
_refine_ls_number_restraints	0
_refine_ls_R_factor_all	0.1095
_refine_ls_R_factor_gt	0.0596
_refine_ls_wR_factor_ref	0.2265
_refine_ls_wR_factor_gt	0.1702

_refine_ls_goodness_of_fit_ref 0.929)
--------------------------------------	---

refine ls rest	rained S all	0.929

- _refine_ls_shift/su_max 0.126
- _refine_ls_shift/su_mean 0.001

loop_

_atom_site_label

_atom_site_type_symbol

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

_atom_site_U_iso_or_equiv

_atom_site_adp_type

_atom_site_occupancy

_atom_site_symmetry_multiplicity

_atom_site_calc_flag

_atom_site_refinement_flags

_atom_site_disorder_assembly

_atom_site_disorder_group

N1 N -0.0522(5) 0.8601(4) 0.8253(4) 0.0519(12) Uani 1 1 d . . .

N2 N 0.0393(5) 0.7234(4) 0.9539(4) 0.0483(12) Uani 1 1 d . . .

O1 O 0.1710(6) 0.7262(5) 0.5756(5) 0.0887(16) Uani 1 1 d . . .

O2 O -0.0500(7) 1.1993(5) 0.6655(5) 0.0927(17) Uani 1 1 d . . .

O3 O 0.2365(5) 0.7403(4) 1.0574(4) 0.0707(13) Uani 1 1 d . . .

Br1 Br 0.24258(7) 0.38483(5) 0.78174(6) 0.0678(4) Uani 1 1 d . . .

C1 C 0.0369(6) 0.7353(5) 0.8472(6) 0.0500(14) Uani 1 1 d . . .

H1 H 0.0885 0.6679 0.7973 0.060 Uiso 1 1 calc R . .

C2 C -0.1056(7) 0.9311(5) 0.9170(6) 0.0603(17) Uani 1 1 d . . .

H2 H -0.1680 1.0220 0.9220 0.072 Uiso 1 1 calc R . .

C3 C -0.0508(7) 0.8442(5) 1.0016(5) 0.0557(15) Uani 1 1 d . . .

H3 H -0.0704 0.8629 1.0750 0.067 Uiso 1 1 calc R . .

C4 C 0.0439(7) 0.9566(6) 0.6303(6) 0.0592(16) Uani 1 1 d . . .

C5 C 0.1640(8) 0.8644(7) 0.5655(6) 0.0686(19) Uani 1 1 d . . .

C6 C 0.2882(9) 0.8990(10) 0.4866(7) 0.083(2) Uani 1 1 d . . .

C7 C 0.2942(10) 1.0352(11) 0.4691(7) 0.091(3) Uani 1 1 d . . .

H7 H 0.3748 1.0614 0.4156 0.109 Uiso 1 1 calc R . .

C8 C 0.1771(10) 1.1323(9) 0.5330(7) 0.078(2) Uani 1 1 d . . .

C9 C 0.0583(8) 1.0930(7) 0.6079(6) 0.0653(17) Uani 1 1 d . . .

C10 C 0.3113(12) 0.6581(11) 0.5001(10) 0.124(4) Uani 1 1 d . . .

H10A H 0.2933 0.6142 0.4468 0.148 Uiso 1 1 calc R ...

H10B H 0.3722 0.5866 0.5423 0.148 Uiso 1 1 calc R . .

C11 C 0.3921(12) 0.7683(12) 0.4376(10) 0.135(5) Uani 1 1 d . . .

H11A H 0.4891 0.7461 0.4512 0.162 Uiso 1 1 calc R . .

H11B H 0.4065 0.7767 0.3570 0.162 Uiso 1 1 calc R . .

C12 C -0.0006(14) 1.3244(9) 0.6241(10) 0.115(3) Uani 1 1 d . . .

H12A H 0.0132 1.3584 0.6850 0.137 Uiso 1 1 calc R . .

H12B H -0.0754 1.3969 0.5944 0.137 Uiso 1 1 calc R . .

C13 C 0.1445(14) 1.2892(10) 0.5333(9) 0.114(3) Uani 1 1 d . . .

H13A H 0.2232 1.3106 0.5508 0.137 Uiso 1 1 calc R . .

H13B H 0.1341 1.3392 0.4610 0.137 Uiso 1 1 calc R . .

C14 C -0.0845(7) 0.9144(7) 0.7158(6) 0.0614(17) Uani 1 1 d . . .

H14A H -0.1730 0.9941 0.7260 0.074 Uiso 1 1 calc R . .

H14B H -0.1058 0.8429 0.6888 0.074 Uiso 1 1 calc R . .

C15 C 0.3258(6) 0.4972(6) 1.1094(5) 0.0524(15) Uani 1 1 d . . .

C16 C 0.3409(6) 0.3645(5) 1.0924(5) 0.0499(14) Uani 1 1 d . . .

H16 H 0.2860 0.3510 1.0502 0.060 Uiso 1 1 calc R . .

C17 C 0.4582(7) 0.1087(6) 1.1184(6) 0.0634(18) Uani 1 1 d . . .

H17 H 0.4034 0.0938 1.0767 0.076 Uiso 1 1 calc R ...

C18 C 0.5547(8) -0.0019(7) 1.1592(7) 0.072(2) Uani 1 1 d . . .

H18 H 0.5673 -0.0913 1.1442 0.087 Uiso 1 1 calc R . .

C19 C 0.6354(8) 0.0182(8) 1.2237(7) 0.078(2) Uani 1 1 d . . .

H19 H 0.6999 -0.0582 1.2534 0.093 Uiso 1 1 calc R . .

C20 C 0.6200(7) 0.1495(8) 1.2435(6) 0.073(2) Uani 1 1 d . . .

H20 H 0.6764 0.1613 1.2852 0.088 Uiso 1 1 calc R ...

C21 C 0.5032(8) 0.4031(7) 1.2196(6) 0.0717(19) Uani 1 1 d . . .

H21 H 0.5551 0.4173 1.2639 0.086 Uiso 1 1 calc R . .

C22 C 0.4106(8) 0.5176(7) 1.1730(6) 0.0681(18) Uani 1 1 d . . .

H22 H 0.4040 0.6074 1.1832 0.082 Uiso 1 1 calc R . .

C23 C 0.4380(6) 0.2472(6) 1.1374(5) 0.0495(14) Uani 1 1 d . . .

C24 C 0.5208(6) 0.2679(6) 1.2022(5) 0.0558(15) Uani 1 1 d . . .

C25 C 0.2279(6) 0.6242(5) 1.0591(5) 0.0506(14) Uani 1 1 d . . .

C26 C 0.1191(6) 0.5975(5) 1.0116(5) 0.0503(14) Uani 1 1 d . . .

H26A H 0.1735 0.5281 0.9589 0.060 Uiso 1 1 calc R . .

H26B H 0.0466 0.5598 1.0724 0.060 Uiso 1 1 calc R . .

loop_

_atom_site_aniso_label

_atom_site_aniso_U_11

_atom_site_aniso_U_22

_atom_site_aniso_U_33

_atom_site_aniso_U_23

_atom_site_aniso_U_13

```
_atom_site_aniso_U_12
```

N1 0.049(3) 0.047(2) 0.055(4) 0.002(2) -0.016(2) -0.0100(19)

N2 0.051(3) 0.038(2) 0.054(4) -0.003(2) -0.014(2) -0.0114(18)

O1 0.094(4) 0.068(3) 0.078(4) -0.002(2) -0.028(3) 0.010(2)

```
O2 0.107(4) 0.065(3) 0.105(5) -0.013(3) -0.032(4) -0.019(3)
```

O3 0.080(3) 0.044(2) 0.097(4) -0.014(2) -0.027(3) -0.0241(19)

Br1 0.0664(5) 0.0498(4) 0.0834(7) -0.0204(3) -0.0104(4) -0.0145(3)

C1 0.046(3) 0.042(3) 0.059(4) -0.006(3) -0.017(3) -0.007(2)

 $C2\ 0.055(4)\ 0.039(3)\ 0.081(5)\ -0.008(3)\ -0.017(4)\ -0.006(2)$ C3 0.066(4) 0.045(3) 0.045(4) -0.011(3) -0.006(3) -0.008(2) C4 0.054(4) 0.060(3) 0.061(5) 0.010(3) -0.029(3) -0.010(3) $C5\ 0.062(4)\ 0.075(4)\ 0.063(5)\ 0.001(3)\ -0.030(4)\ -0.005(3)$ C6 0.072(5) 0.116(6) 0.045(5) 0.003(4) -0.020(4) -0.008(4) C7 0.073(5) 0.143(8) 0.059(6) -0.001(5) -0.013(4) -0.045(5) C8 0.088(6) 0.103(5) 0.052(5) 0.007(4) -0.024(5) -0.043(4) $C9\ 0.070(4)\ 0.069(4)\ 0.059(5)\ -0.006(3)\ -0.030(4)\ -0.013(3)$ C10 0.099(7) 0.114(7) 0.118(10) -0.037(7) -0.034(7) 0.039(6) C11 0.094(7) 0.144(9) 0.088(8) -0.008(7) 0.013(6) 0.026(7) $C12\ 0.148(9)\ 0.083(6)\ 0.123(10)\ -0.004(6)\ -0.045(8)\ -0.043(6)$ C13 0.179(11) 0.110(7) 0.084(8) 0.004(6) -0.039(8) -0.087(7) C14 0.045(3) 0.074(4) 0.056(5) 0.003(3) -0.013(3) -0.012(3) $C15\ 0.050(3)\ 0.054(3)\ 0.054(4)\ -0.010(3)\ -0.012(3)\ -0.016(2)$ $C16\ 0.043(3)\ 0.051(3)\ 0.060(4)\ -0.011(3)\ -0.018(3)\ -0.012(2)$ $C17\ 0.061(4)\ 0.051(3)\ 0.080(5)\ -0.008(3)\ -0.031(4)\ -0.006(3)$ C18 0.064(4) 0.060(4) 0.078(6) -0.005(3) -0.020(4) 0.000(3) C19 0.057(4) 0.081(5) 0.072(6) -0.005(4) -0.021(4) 0.010(3) $C20\ 0.049(4)\ 0.108(6)\ 0.060(5)\ 0.011(4)\ -0.025(3)\ -0.020(3)$ $C21\ 0.074(5)\ 0.092(5)\ 0.067(5)\ 0.004(4)\ -0.036(4)\ -0.038(4)$ $C22\ 0.080(5)\ 0.071(4)\ 0.068(5)\ -0.006(3)\ -0.021(4)\ -0.041(3)$ $C23\ 0.036(3)\ 0.066(3)\ 0.045(4)\ -0.008(3)\ -0.009(3)\ -0.012(2)$

C24 0.048(3) 0.072(4) 0.047(4) -0.005(3) -0.010(3) -0.021(3) C25 0.049(3) 0.045(3) 0.051(4) -0.013(2) -0.005(3) -0.010(2) C26 0.054(3) 0.035(2) 0.058(4) -0.003(2) -0.017(3) -0.009(2)

_geom_special_details

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

_diffrn_measured_fraction_theta_max	0.988
_diffrn_reflns_theta_full	25.00
_diffrn_measured_fraction_theta_full	0.988
_refine_diff_density_max 0.560	
_refine_diff_density_min -0.661	
_refine_diff_density_rms 0.093	

4. Biological Assay Procedures and Results

4.1 Cytotoxicity assay

The assay was in five kinds of cell lines (HL-60, SMMC-7721, A549, MCF-7 and SW480). Cells were cultured at 37 °C under a humidified atmosphere of 5% CO₂ in RPMI 1640 medium supplemented with 10% fetal serum and dispersed in replicate 96-well plates. Compounds were then added. After 48 h exposure to the compounds, cells viability were determined by the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide] (MTT) cytotoxicity assay by measuring the absorbance at 570 nm with a microplate spectrophotometer. Each test was performed in triplicate.

4.2 (Sytotoxic Activit	ies of Comr	ounds 7–42	in vitro ^b (IC50.	и М ^{<i>a</i>})
T.	y totoxic Activit		Jounus / Ha		10309	μινι μ

Entry	Compound no.	HL-60	MCF-7	SW480	A549	SMMC-7721
1	8	>40	>40	>40	>40	>40
2	9	>40	>40	>40	>40	>40
3	10	>40	>40	>40	>40	>40
4	11	>40	>40	>40	>40	>40
5	12	12.27	16.70	25.07	32.92	>40
6	13	1.84	3.49	4.72	6.64	10.28
7	14	2.22	12.16	15.67	34.29	28.60
8	15	>40	>40	>40	>40	>40
9	16	1.13	2.90	3.62	7.22	10.49
10	17	>40	>40	>40	>40	>40
11	18	3.66	14.65	17.46	39.93	>40
12	19	>40	>40	>40	>40	>40
13	20	1.09	3.43	4.63	9.08	9.02
14	21	3.96	15.79	9.65	11.48	17.17
15	22	0.63	6.98	3.50	3.39	2.59
16	23	0.77	3.46	10.08	7.81	13.08
17	24	>40	>40	>40	>40	>40
18	25	0.51	0.65	3.89	1.86	3.36
19	26	3.61	18.80	32.26	32.80	>40
20	27	1.99	4.26	13.85	10.22	15.03
21	28	0.82	4.66	15.11	5.82	6.45
22	29	1.04	1.21	4.61	3.61	7.64

23	30	1.65	1.58	4.06	9.60	8.56
24	31	1.21	0.80	2.45	3.83	5.48
25	32	0.42	0.27	0.92	0.96	2.13
26	33	0.58	2.36	1.84	3.58	7.45
27	34	0.31	1.13	0.57	0.55	1.35
28	35	2.03	5.16	3.77	3.16	8.22
29	36	1.17	1.60	3.20	5.44	6.41
30	37	0.87	2.96	2.75	5.63	5.13
31	38	0.83	1.19	2.93	3.30	5.17
32	39	0.57	0.94	0.89	1.48	1.25
33	40	0.50	0.69	1.01	1.62	0.73
34	41	0.40	0.65	0.64	1.06	2.21
35	42	0.79	0.97	0.96	1.45	1.81
36	43	0.26	0.20	0.26	0.83	1.81
37	44	1.23	1.04	1.21	4.39	3.97
38	45	1.18	1.02	1.63	4.13	3.07
39	46	0.95	0.61	1.41	2.55	4.89
40	47	0.98	0.83	1.36	3.28	3.92
41	DDP	5.52	12.99	12.61	16.51	18.77

^{*a*} Cytotoxicity as IC_{50} for each cell line, is the concentration of compound which reduced by 50% the optical density of treated cells with respect to untreated cells using the MTT assay.

^b Data represent the mean values of three independent determinations.

5. Docking Calculations

Compounds **43** and **34** were docked into PI3K γ [from the complex between PI3K and 4-amino-2-methyl-N-(1*H*-pyrazol-3-yl)quinazoline-8-carboxamide, PDB code 3PRZ] using AutoDock (Version 4.0). A grid of 118, 126, and 126 points in the x, y, and z directions was constructed centered on 8.0, -7.0, and 8.0. We used a grid spacing of 0.375 Å and a distance-dependent function of the dielectric constant for the energetic map calculations. Docking simulations of the compounds were carried out using the Lamarckian genetic algorithm and through a protocol with an initial population of 150 randomly placed individuals, a maximum number of 250 million energy evaluations, a mutation rate of 0.02, a crossover rate of 0.8, and an elitism value of 1. Fifty independent docking runs were carried out for each compound, and the resulting conformations that differed by 1.0 Å in positional root-mean-square deviation (rmsd) were clustered together. Cluster analysis was performed by selecting the most populated cluster, which in all cases coincided with the one endowed with the best energy.

Fig.2 Model of hybrid compound 43 docked into PI3Ky

Fig.3 Model of hybrid compound 34 docked into PI3Ky

6. ¹H-NMR and ¹³C-NMR Spectral of New Compounds 8-47 Compound 8

Compound 9

Compound 14

S62

Compound 29

S73

Compound 38

S83

S88