Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013

Supporting Information

Synthesis of functionalized 2-pyridones via Michael addition and cyclization reaction of amines, alkynes and dialkyl acetylene dicarboxylates

Supporting Information

Qinglei Chong, Xiaoyi Xin, Chunxiang Wang, Fan Wu, Boshun Wan*

Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.

E-mail: bswan@dicp.ac.cn

Table of Contents

1. Experimental section	······S2–S3
2. Analytical Data	S3–S19
3. Copy of NMR, HRMS Spectra	S20–S126
4. Crystal Structure of 4aq	S127

EXPERIMENTAL SECTION

General Considerations. All reactions were carried out under an atmosphere of argon using standard Schlenk techniques unless otherwise noted. Column chromatog-raphy was carried out on silica gel (300–400 mesh) using a forced flow of eluent at 0.3–0.5 bar pressure. For TLC, silica gel GF254 was used and visualized by fluorescence quenching under UV light. Solvents were dried according to the standard procedure and were distilled prior to use.

¹H NMR, ¹³C NMR, ¹⁹F NMR spectra were recorded at 400 MHz spectrometers. The chemical shifts for ¹H NMR were recorded in ppm downfield from tetramethylsilane (TMS) with the solvent resonance as the internal standard (2.05 ppm for CD₃COCD₃ or 7.26 ppm for CDCl₃). The chemical shifts for ¹³C NMR were recorded in ppm downfield using the central peak of CDCl₃ (77.16 ppm) or CD₃COCD₃ (29.84 ppm) as the internal standard. Coupling constants (*J*) are reported in Hz and refer to apparent peak multiplications. The abbreviations *s*, *d*, *t*, *q*, and *m* stand for singlet, doublet, triplet, quartet, and multiplet in that order. All ¹³C NMR spectra were proton decoupled.

Experimental Section.

General Procedure for the Cyclization of Alkynes with Aliphatic Amines.

Terminal alkyne (0.5 mmol for monamine, 1.0 mmol for diamine) and aliphatic

amines (0.5 mmol) were mixed in wet EtOH (2 ml) under argon atmosphere. The solution was stirred at room temperature for 24 h. Subsequently, dialkyl acetylene dicarboxylate (0.5 mmol for monamine, 1.0 mmol for diamine) was added and the solution was stirred at 78 °C under argon atmosphere. After completion of the reaction (as monitored by TLC), the solvent was removed under reduced pressure and the resulting residue was subjected to silica gel chromatography or recrystallized to give the desired product.

General Procedure for the Cyclization of Alkyne with Aromatic Amines.

A solution of aromatic amine (0.5 mmol), dialkyl acetylene dicarboxylate (1 mmol) and wet ethanol (2 mL) were stirred vigorously at room temperature for 10 min. Then the mixture was heated for 24 h. The progress of reaction was monitored by TLC (ether/ethyl acetate = 2:1). The solvent was removed under reduced pressure; the resulting residue was purified by silica gel chromatography. Further purification was done by recrystallization in mixture of ether/ethyl acetate (4:1).

3-Ethyl 4-methyl

Analytical Data

1-methyl-6-oxo-1,6-dihydropyridine-3,4-dicarboxylate (**4aa**): white solid; 80.3 mg; 67% yield; mp 146 – 149 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 6.47 (s, 1H), 4.22 (s, 2H), 3.84 (s, 3H), 3.53 (s, 3H), 1.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 163.1, 161.9, 144.3, 144.1, 118.2, 107.3, 63.5, 52.9, 38.2, 14.2; HRMS (Q-TOF, m/z) calcd for C₁₁H₁₃NO₅Na [M+Na]⁺ 262.0691, found 262.0701.

3-Ethyl 4

4-methyl

1-ethyl-6-oxo-1,6-dihydropyridine-3,4-dicarboxylate (**4ab**): white solid; 104 mg; 83% yield; mp 67 – 68 °C; ¹H NMR (400 MHz, CD₃COCD₃) δ 8.43 (s, 1H), 6.42 (s, 1H), 4.23 (s, 2H), 4.08 (s, 2H), 3.84 (s, 3H), 1.34 (s, 3H), 1.29 (s, 3H); ¹³C NMR (100 MHz, CD₃COCD₃) δ 166.9, 163.5, 161.5, 145.3, 118.4, 107.4, 61.7, 52.9, 46.0, 14.6, 14.4; HRMS (Q-TOF, m/z) calcd for C₁₂H₁₅NO₅Na [M+Na]⁺ 276.0848, found 276.0853.

3-Ethyl

4-methyl

6-oxo-1-propyl-1,6-dihydropyridine-3,4-dicarboxylate (**4ac**): oil; 119 mg; 89% yield; ¹H NMR (400 MHz, CD₃COCD₃) δ 8.41 (s, 1H), 6.43 (s, 1H), 4.24 – 4.21 (m, 2H), 4.03 –4.01 (m, 2H) , 3.99 – 3.84 (m, 3H), 1.76 (d, *J* = 7.2 Hz, 2H), 1.28 (t, *J* = 6.9 Hz, 3H), 0.94 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CD₃COCD₃) δ 167.1, 163.9, 161.6, 145.5, 144.8, 118.5, 107.1, 61.5, 52.9, 52.1, 22.9, 14.4, 11.1; HRMS (Q-TOF, m/z) calcd for C₁₃H₁₇NO₅Na [M+Na]⁺ 290.0997, found 290.1004.

3-Ethyl

4-methyl

1-cyclopropyl-6-oxo-1,6-dihydropyridine-3,4-dicarboxylate (4ad): white solid; 104.6 mg; 79% yield; mp 115 – 116 °C; ¹H NMR (400 MHz, CD₃COCD₃) δ 8.20 (s, 1H), 6.39 (s, 1H), 4.24 (q, J = 6.5 Hz, 2H), 3.84 (s, 3H), 3.43 – 3.34 (m, 1H), 1.29 (t, J = 6.4 Hz, 3H), 1.11 (d, J = 6.0 Hz, 2H), 0.98 (s, 2H); ¹³C NMR (100 MHz, CD₃COCD₃) δ 167.4, 164.1, 162.1, 144.8, 144.7, 118.3, 106.7, 61.7, 52.9, 33.6, 14.4, 6.9; HRMS (Q-TOF, m/z) calcd for C₁₃H₁₅NO₅Na [M+Na]⁺ 288.0855, found 288.0848.

3-Ethyl 4-methyl

1-butyl-6-oxo-1,6-dihydropyridine-3,4-dicarboxylate (**4ae**): oil; 109.6 mg; 78% yield; ¹H NMR (400 MHz, CD₃COCD₃) δ 8.39 (s, 1H), 6.41 (s, 1H), 4.22 (m, 2H), 4.03 (s, 2H), 3.82 (s, 3H), 1.71 (s, 2H), 1.34 (s, 2H), 1.26 (s, 3H), 0.92 (s, 3H); ¹³C NMR (100 MHz, CD₃COCD₃) δ 167.29, 163.9, 160.6, 145.5, 144.8, 118.4, 107.2, 61.7, 52.9, 50.4, 31.8, 20.3, 14.4, 13.9; HRMS (Q-TOF, m/z) calcd for C₁₄H₁₉NO₅Na [M+Na]⁺ 304.1161, found 304.1153.

3-Ethyl

4-methyl

1-cyclohexyl-6-oxo-1,6-dihydropyridine-3,4-dicarboxylate (**4af**): white solid; 106.3 mg; 69% yield; mp 77 – 78 °C; ¹H NMR (400 MHz, CD₃COCD₃) δ 8.31 (s, 1H), 6.43 (s, 1H), 4.67-4.70 (t, *J* = 11.7 Hz, 1H), 4.24 (d, *J* = 3.3 Hz, 2H), 3.84 (s, 3H), 1.92 (d, *J* = 10.1 Hz, 4H), 1.70 (t, *J* = 11.3 Hz, 3H), 1.49 (dd, *J* = 24.3, 12.4 Hz, 2H), 1.28 (s, 4H); ¹³C NMR (100 MHz, CD₃COCD₃) δ 167.4, 164.4, 161.1, 143.9), 141.5, 118.4, 107.3, 61.7, 56.2, 52.9, 32.4, 26.4, 25.7, 14.4; HRMS (Q-TOF, m/z) calcd for $C_{16}H_{21}NO_5Na [M+Na]^+$ 330.1317, found 330.1310.

3-Ethyl 4-methyl

1-(2-fluorobenzyl)-6-oxo-1,6-dihydropyridine-3,4-dicarboxylate (4ag): white solid; 114.7 mg; 69% yield; mp 106 – 117 °C; ¹H NMR (400 MHz, CD₃COCD₃) δ 8.52 (s, 1H), 7.35 (t, *J* = 6.4 Hz, 2H), 7.16 (dd, *J* = 15.4, 8.1 Hz, 2H), 6.48 (s, 1H), 5.31 (s, 2H), 4.26 (q, *J* = 7.1 Hz, 2H), 3.84 (s, 3H), 1.28 – 1.25 (m, 3H); ¹³C NMR (100 MHz, CD₃COCD₃) δ 167.1, 163.8, 163.0, 161.5, 160.2, 145.7, 145.1, 131.1, 131.0, 125.3, 118.7, 116.3, 107.7, 61.8, 52.9, 47.94, 47.90, 14.4; 19F NMR (377 MHz, CD₃COCD₃) δ -119.4; HRMS (Q-TOF, m/z) calcd for C₁₇H₁₆FNO₅Na [M+Na]⁺ 356.0910, found 356.0897.

3-Ethyl 4-methyl

1-(2-chlorobenzyl)-6-oxo-1,6-dihydropyridine-3,4-dicarboxylate (4ah): white solid; 141.4 mg; 81% yield; mp 114 – 115 °C; ¹H NMR (400 MHz, CD₃COCD₃) δ 8.47 (s, 1H), 7.45 (s, 1H), 7.31 (s, 2H), 7.20 (s, 1H), 6.50 (s, 1H), 5.32 (s, 2H), 4.19-4.21 (d, *J* = 6.8 Hz, 2H), 3.84 (s, 3H), 1.23 (s, 3H); ¹³C NMR (100 MHz, CD₃COCD₃) δ 166.9, 163.6, 161.4, 145.7, 145.6, 145.2, 134.2, 133.8, 130.49, 130.44, 0, 118.8, 107.6, 61.8, 53.0, 51.2, 14.4; HRMS (Q-TOF, m/z) calcd for C₁₇H₁₆CINO₅Na [M+Na]⁺ 372.0615, found 372.0631.

1-(4-chlorobenzyl)-6-oxo-1,6-dihydropyridine-3,4-dicarboxylate (4ai): white solid; 128.9 mg; 74% yield; mp 132 – 133 °C; ¹H NMR (400 MHz, CD₃COCD₃) δ 8.55 (s, 1H), 7.41 (dd, *J* = 19.1, 7.3 Hz, 4H), 6.50 (s, 1H), 5.27 (s, 2H), 4.23 (d, *J* = 6.0 Hz, 2H), 3.85 (s, 3H), 1.26 (t, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CD₃COCD₃) δ 166.6, 163.6, 161.5, 145.4, 145.1, 136.2, 134.2, 130.7, 129.5, 118.9, 107.9, 61.8, 53.0, 52.5, 14.4; HRMS (Q-TOF, m/z) calcd for C₁₇H₁₆ClNO₅Na [M+Na]⁺ 372.0615, found 372.0631.

3-Ethyl 4-methyl 1-(2-methoxybenzyl)-6-oxo-1,6-dihydropyridine-3,4-dicarboxylate (**4aj**): white solid; 135.5 mg; 80% yield; mp 119 – 120 °C; ¹H NMR (400 MHz, CD₃COCD₃) δ 8.51 (s, 1H), 7.31 (s, 2H), 7.03 (d, *J* = 6.3 Hz, 1H), 6.93 (s, 1H), 6.43 (s, 1H), 5.16 (s, 2H), 4.23 (d, *J* = 2.4 Hz, 2H), 3.89 (s, 3H), 3.83 (s, 3H), 1.28 (s, 3H); ¹³C NMR (100 MHz, CD₃COCD₃) $\delta\delta$ 167.2, 164.0, 161.6, 158.2, 146.2, 144.5, 131.7, 130.7, 121.3, 118.4, 111.6, 107.2, 61.7, 49,3, 14.4; HRMS (Q-TOF, m/z) calcd for C₁₈H₁₉NO₆Na [M+Na]⁺ 368.1110, found 368.1100.

3-Ethyl 4-methyl

1-(3-methoxybenzyl)-6-oxo-1,6-dihydropyridine-3,4-dicarboxylate (**4ak**): white solid; 124.2 mg; 72% yield; mp 66 – 67 °C; ¹H NMR (400 MHz, CD₃COCD₃) δ 8.44 (s, 1H), 7.21 (d, J = 6.2 Hz, 1H), 6.93 (d, J = 9.9 Hz, 1H), 6.89 (s, 1H), 6.82 (s, 1H), 6.47 (s, 1H), 5.19 (s, 2H), 4.15 (s, 2H), 3.80 (s, 3H), 3.72 (s, 3H), 1.19 (s, 3H); ¹³C NMR (100 MHz, CD₃COCD₃) δ 167.2, 163.8, 161.6, 160.9, 145.3, 144.9, 138.7, 130.7, 120.8, 118.8, 111.4, 107.8, 61.8, 55.5, 52.9, 52.8, 14.4; HRMS (Q-TOF, m/z) calcd for C₁₈H₁₉NO₆Na [M+Na]⁺ 368.1110, found 368.1100

O3-Ethyl4-methyl1-(4-methoxybenzyl)-6-oxo-1,6-dihydropyridine-3,4-dicarboxylate(4al): whitesolid; 104.3 mg; 61% yield; mp 97 – 98 °C; ¹H NMR (400 MHz, CD₃COCD₃) δ 8.43(s, 1H), 7.31-7.34 (d, J = 8.7 Hz, 2H), 6.84-6.91 (d, J = 8.7 Hz, 2H), 6.44 (s, 1H), 5.13(s, 2H), 4.14-4.19 (q, J = 7.1 Hz, 2H), 3.79 (s, 3H), 3.72 (s, 3H), 1.18-1.25 (t, J = 7.1Hz, 3H); ¹³C NMR (100 MHz, CD₃COCD₃) δ 167.2, 163.9, 161.7, 160.5, 145.1,144.9, 130.6, 129.1, 118.8, 114.9, 107.7, 61.8, 55.5, 53.0, 52.5, 14.4; HRMS (Q-TOF,m/z) calcd for C₁₈H₁₉NO₆Na [M+Na]⁺ 368.1110, found 368.1098.

3-Ethyl 4-methyl

1-(2-methylbenzyl)-6-oxo-1,6-dihydropyridine-3,4-dicarboxylate (4am): white solid; 120.7 mg; 74% yield; mp 122 – 123 °C; ¹H NMR (400 MHz, CD₃COCD₃) δ 8.31 (d, *J* = 5.2 Hz, 1H), 7.20-7.24 (d, *J* = 13.0 Hz, 3H), 7.04 (d, *J* = 5.3 Hz, 1H), 6.50-6.52 (d, *J* = 5.3 Hz, 1H), 5.26 (s, 2H), 4.18 (d, *J* = 12.4 Hz, 2H), 3.84-3.87 (d, *J* = 5.3 Hz, 3H), 2.35 (d, *J* = 5.3 Hz, 3H), 1.22 – 1.25 (m, 3H); ¹³C NMR (100 MHz, CD₃COCD₃) δ 166.1, 163.9, 161.8, 145.2, 131.4, 128.8, 128.3, 127.1, 118.6, 107.3, 61.8, 53.0, 50.6, 19.1, 14.3; HRMS (Q-TOF, m/z) calcd for C₁₈H₁₉NO₅Na [M+Na]⁺ 352.1161, found 352.1176.

3-Ethyl 4-methyl

1-(3-methylbenzyl)-6-oxo-1,6-dihydropyridine-3,4-dicarboxylate (4an): white solid; 129.2 mg; 79% yield; mp 118 – 119 °C; ¹H NMR (400 MHz, CD₃COCD₃) δ 8.48 (s, 1H), 7.28 – 7.04 (m, 4H), 6.43 (s, 1H), 5.22 (s, 2H), 4.20-4.23 (s, 2H), 3.84 (s, 3H), 2.29 (s, 3H), 1.26 (s, 3H); ¹³C NMR (100 MHz, CD₃COCD₃) δ 167.1, 164.6, 162.2, 145.4, 137.2, 129.5, 125.9, 118.8, 107.8, 61.8, 52.98, 52.92, 21.3, 14.4; HRMS (Q-TOF, m/z) calcd for C₁₈H₁₉NO₅Na [M+Na]⁺ 352.1161, found 352.1176.

3-Ethyl 4-methyl

1-(4-methylbenzyl)-6-oxo-1,6-dihydropyridine-3,4-dicarboxylate (4ao): white solid; 127.6 mg; 78% yield; mp 128 – 129 °C; ¹H NMR (400 MHz, CD₃COCD₃) δ 8.47 (s, 1H), 7.28-7.30 (d, *J* = 8.0 Hz, 2H), 7.16-7.18 (d, *J* = 7.9 Hz, 2H), 6.49 (s, 1H), 5.22 (s, 2H), 4.19-4.21 (q, *J* = 7.1 Hz, 2H), 3.84 (s, 3H), 2.29 (s, 3H), 1.24-1.27 (t, *J* =

7.1 Hz, 3H); ¹³C NMR (100 MHz, CD₃COCD₃) δ 166.7, 163.7, 161.3, 145.3, 144.9, 138.5, 134.3, 130.2, 129.0, 118.8, 107.5, 61.7, 52.9, 52.7, 21.0, 14.4; HRMS (Q-TOF, m/z) calcd for C₁₈H₁₉NO₅Na [M+Na]⁺ 352.1161, found 352.1167.

Diethyl

1-(4-methylbenzyl)-6-oxo-1,6-dihydropyridine-3,4-dicarboxylate (4ap): white solid; 116.5 mg; 68% yield; mp 121 – 122 °C; ¹H NMR (400 MHz, CD₃COCD₃) δ 8.46 (s, 1H), 7.28-7.30 (d, *J* = 8.0 Hz, 2H), 7.17-7.19 (d, *J* = 7.9 Hz, 2H), 6.48 (s, 1H), 5.22 (s, 2H), 4.31 (q, *J* = 7.1 Hz, 2H), 4.22 (q, *J* = 7.1 Hz, 2H), 2.30 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H), 1.26 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CD₃COCD₃) δ 166.1, 163.9, 161.7, 145.27, 145.23, 138.5, 134.3, 130.2, 128.9, 118.8, 107.8, 62.4, 61.7, 52.6, 21.0, 14.4, 14.2; HRMS (Q-TOF, m/z) calcd for C₁₉H₂₁NO₅Na [M+Na]⁺ 366.1317, found 366.1311.

3-Ethyl

4-methyl

1-benzyl-6-oxo-1,6-dihydropyridine-3,4-dicarboxylate (**4aq**): white solid; 146.7 mg; 93% yield; mp 130 – 131 °C; ¹H NMR (400 MHz, DMSO) δ 8.67 (s, 1H), 7.28-7..35 (dd, J = 17.2, 6.8 Hz, 5H), 6.58 (s, 1H), 5.23 (s, 2H), 4.18-4.24 (q, J = 7.1 Hz, 2H), 3.80 (s, 3H), 1.18-1.26 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO) δ 167.5, 164.2, 161.9, 146.5, 145.0, 137.6, 130.0, 129.1, 129.0,

118.9, 107.5, 62.4, 54.0, 53.2, 15.3; HRMS (Q-TOF, m/z) calcd for $C_{17}H_{17}NO_5Na [M+Na]^+$ 338.1004, found 338.1020.

Dimethyl

1-benzyl-6-oxo-1,6-dihydropyridine-3,4-dicarboxylate (**4ar**): white solid; 115.9 mg; 77% yield; mp 125 – 127 °C; ¹H NMR (400 MHz, CD₃COCD₃) δ 8.49 (s, 1H), 7.42 – 7.29 (m, 5H), 6.50 (s, 1H), 5.27 (s, 2H), 3.84 (s, 3H), 3.75 (s, 3H); ¹³C NMR (100 MHz, CD₃COCD₃) δ 167.1, 163.8, 161.7, 145.4, 145.0, 137.3, 129.6, 128.9, 128.8, 118.9, 107.4, 53.03, 53.00, 52.4.; HRMS (Q-TOF, m/z) calcd for C₁₆H₁₅NO₅Na [M+Na]⁺ 324.0848, found 324.0843.

3-Ethyl 4-methyl

1-(naphthalen-1-ylmethyl)-6-oxo-1,6-dihydropyridine-3,4-dicarboxylate (4as): white solid; 174 mg; 95% yield; mp 117 – 119 °C; ¹H NMR (400 MHz, CD₃COCD₃) δ 8.34 (s, 1H), 8.11 (d, *J* = 7.9 Hz, 1H), 7.94-7.98 (dd, *J* = 15.7, 8.0 Hz, 2H), 7.61 – 7.51 (m, 3H), 7.39-7.40 (d, *J* = 6.9 Hz, 1H), 6.58 (s, 1H), 5.76 (s, 2H), 4.12-4.18 (q, *J* = 7.0 Hz, 2H), 3.85 (s, 3H), 1.17-1.20 (t, *J* = 7.0 Hz, 3H).; ¹³C NMR (100 MHz, CD₃COCD₃) δ 167.1, 163.7, 161.7, 144.9, 144.6, 129.81, 129.80, 129.73, 129.70, 127.13, 127.1, 123.9, 118.7, 107.7, 61.7, 53.0, 49.8, 14.3; HRMS (Q-TOF, m/z) calcd for C₂₁H₁₉NO₅Na [M+Na]⁺ 388.1161, found 388.1158.

3-Diethyl 4-dimethyl

4-dimethyl

1,1'-(butane-1,4-diyl)bis(6-oxo-1,6-dihydropyridine-3,4-dicarboxylate) (4at): white solid; 0.305 mg; 61% yield; mp 216 – 217 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 2H), 6.51 (s, 2H), 4.26-4.28 (d, *J* = 6.6 Hz, 4H), 4.01 (s, 4H), 3.88 (s, 6H), 1.79 (s, 4H), 1.32 (d, *J* = 26.7 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 163.0, 161.5, 144.1, 143.5, 118.7, 107.8, 61.6, 53.0, 49.8, 26.1, 14.2; HRMS (Q-TOF, m/z) calcd for C₂₄H₂₈N₂O₁₀Na [M+Na]⁺ 527.1642, found 527.1649.

1,1'-(ethane-1,2-diyl)bis(6-oxo-1,6-dihydropyridine-3,4-dicarboxylate) (4au): white solid; 141 mg; 30% yield; mp 214 – 215 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (s, 2H), 6.56 (s, 2H), 4.32 (s, 4H), 4.22-4.27 (q, *J* = 7.1 Hz, 4H), 3.88 (s, 6H), 1.27-1.31 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 162.4, 161.5, 144.9, 143.5, 118.7, 108.4, 61.8, 53.1, 48.8, 14.2; HRMS (Q-TOF, m/z) calcd for C₂₂H₂₄N2O10Na [M+Na]⁺ 499.1329, found 499.1335.

3-Diethyl

$$Ph$$
 N CO_2Me
 CO_2Et **3-Ethyl 4-methyl**

6-oxo-1-phenyl-1,6-dihydropyridine-3,4-dicarboxylate (4av): white solid; 176 mg; 28% yield (2 mmol); mp 123 – 124 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 7.50 – 7.52 (m, 3H), 7.37 (s, 2H), 6.63 (s, 1H), 4.28 (d, *J* = 4.1 Hz, 2H), 3.93 (s, 3H),

1.30 (t, J = 12.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 162.6, 161.3, 144.0,139.4, 129.7, 126.3, 119.6, 107.6, 61.6, 53.1, 14.2; HRMS (Q-TOF, m/z) calcd for C₁₆H₁₅NO₅Na [M+Na]⁺ 324.0848, found 324.0846.

Trimethyl

6-oxo-1-phenyl-1,6-dihydropyridine-2,3,4-tricarboxylate (5aa): white solid; 138mg; 83% yield; mp 112 – 113 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.0 Hz, 3H), 7.25 (d, *J* = 8.1 Hz, 2H), 6.84 (s, 1H), 3.91 (s, 3H), 3.80 (s, 3H), 3.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 163.5, 161.2, 160.5, 145.6, 143.1, 136.2, 129.9, 129.3, 128.1, 121.3, 106.6, 53.1, 53.0, 52.9; HRMS (Q-TOF, m/z) calcd for C₁₇H₁₅NO₇Na [M+Na]⁺ 368.0746, found 368.0740.

Trimethyl

6-oxo-1-o-tolyl-1,6-dihydropyridine-2,3,4-tricarboxylate (5ab): white solid; 131.1 mg; 73% yield; mp 113 – 114 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.37 (dt, J = 8.0 Hz, 3H), 7.27 (d, J = 7.2 Hz, 1H), 6.83 (s, 1H), 3.92 (s, 3H), 3.79 (s, 3H), 3.46 (s, 3H), 2.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 163.4, 161.1, 159.8, 145.8, 143.4, 136.5, 135.6, 135.4, 131.0, 130.2, 127.9, 126.7, 121.0, 106.3, 53.1, 52.9, 52.8, 17.4; HRMS (Q-TOF, m/z) calcd for C₁₈H₁₇NO₇Na [M+Na]⁺ 382.0903, found 382.0908.

Trimethyl

6-oxo-1-m-tolyl-1,6-dihydropyridine-2,3,4-tricarboxylate (5ac): white solid; 137.7 mg; 74% yield; mp 134 – 135 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (t, *J* = 7.7 Hz, 1H), 7326-7.28 (d, *J* = 7.7 Hz, 1H), 7.04 – 7.05 (m, 2H), 6.83 (s, 1H), 3.91 (s, 3H), 3.80 (s, 3H), 3.50 (s, 3H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 163.6, 161.3, 160.6, 145.6, 143.1, 139.5, 136.1, 129.1, 128.5, 124.9, 121.3, 106.5, 53.1, 53.0, 52.9, 21.2; HRMS (Q-TOF, m/z) calcd for C₁₈H₁₇NO₇Na [M+Na]⁺ 382.0903, found 382.0912.

Trimethyl

6-oxo-1-p-tolyl-1,6-dihydropyridine-2,3,4-tricarboxylate (5ad): white solid; 168.8 mg; 90% yield; mp 124 – 125 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.27-7.29 (d, *J* = 8.0 Hz, 2H), 7.11-7.13 (d, *J* = 8.1 Hz, 2H), 6.83 (s, 1H), 3.92 (s, 3H), 3.80 (s, 3H), 3.52 (s, 3H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 163.6, 161.4, 160.9, 145.6, 143.2, 140.2, 133.6, 130.1, 127.8, 121.3, 106.6, 53.2 53.1, 53.0, 21.3; HRMS (Q-TOF, m/z) calcd for C₁₈H₁₇NO₇Na [M+Na]⁺ 382.0903, found 382.0906.

Trimethyl

1-(4-fluorophenyl)-6-oxo-1,6-dihydropyridine-2,3,4-tricarboxylate (5ae): white

solid; 134.7 mg; 71% yield; mp 160 – 162 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.27 (d, J = 8.0 Hz, 2H), 7.17-7.19 (d, J = 8.1 Hz, 2H), 6.81 (s, 1H), 3.92 (s, 3H), 3.81 (s, 3H), 3.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 164.3, 163.5, 161.8, 161.3, 160.6, 145.6, 143.3, 132.1, 130.3, 130.2, 121.4, 116.7, 116.4, 106.8, 53.28, 53.026, 53.0; ¹⁹F NMR (377 MHz, CDCl₃) δ -110.6; HRMS (Q-TOF, m/z) calcd for C₁₇H₁₄FNO₇Na [M+Na]⁺ 386.0652, found 386.0644.

Trimethyl

1-(4-chlorophenyl)-6-oxo-1,6-dihydropyridine-2,3,4-tricarboxylate (**5af**): white solid; 139.8 mg; 71% yield; mp 150 – 151 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.47 (d, *J* = 8.0 Hz, 2H), 7.21 (d, *J* = 8.1 Hz, 2H), 6.83 (s, 1H), 3.92 (s, 3H), 3.81 (s, 3H), 3.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 163.5, 161.2, 160.4, 145.3, 143.3, 136.1, 134.7, 129.7, 129.6, 121.5, 106.8, 53.3, 53.2, 53.0; HRMS (Q-TOF, m/z) calcd for C₁₇H₁₄ClNO₇Na [M+Na]⁺ 402.0356, found 402.0347.

Trimethyl

1-(3-bromophenyl)-6-oxo-1,6-dihydropyridine-2,3,4-tricarboxylate (**5ag**): white solid; 145.5 mg; 69% yield; mp 151 – 152 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.61-7.63 (d, J = 8.1 Hz, 1H), 7.39 (s, 1H), 7.45 (t, J = 8.0 Hz, 1H), 7.37 (d, J = 8.0 Hz, 1H), 6.84 (s, 1H), 3.92 (s, 3H), 3.81 (s, 3H), 3.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 163.4, 162.3, 161.1, 160.3, 145.0, 143.2, 137.3, 131.3, 131.1, 130.4,

127.1, 122.5, 121.6, 107.1, 53.3, 53.2, 53.0; HRMS (Q-TOF, m/z) calcd for $C_{17}H_{14Br}NO_7Na [M+Na]^+ 445.9851$, found 445.9858.

Trimethyl

1-(4-ethoxyphenyl)-6-oxo-1,6-dihydropyridine-2,3,4-tricarboxylate (5ah): white solid; 180.7 mg; 89% yield; mp 103 – 104 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.13-7.16 (d, *J* = 8.7 Hz, 2H), 6.94-6.96 (d, *J* = 8.7 Hz, 2H), 6.81 (d, *J* = 8.4 Hz, 1H), 4.06 – 4.08 (m, 2H), 3.91 (d, *J* = 8.7 Hz, 3H), 3.80 (d, *J* = 8.1 Hz, 3H), 3.54 (d, *J* = 7.5 Hz, 3H), 1.41 – 1.44 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 163.6, 161.4, 160.9, 159.8, 146.2, 143.2, 129.2, 128.4, 121.1, 115.0, 105.9, 63.8, 53.2, 53.1, 52.9, 14.7; HRMS (Q-TOF, m/z) calcd for C₁₉H₁₉NO₈Na [M+Na]⁺ 412.1008, found 412.1015.

Triethyl

6-oxo-1-p-tolyl-1,6-dihydropyridine-2,3,4-tricarboxylate (5ai): oil; 126.7 mg; 63% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.18-7.20 (d, J = 8.0 Hz, 2H), 7.04-7.06 (d, J = 8.0 Hz, 2H), 6.75 (s, 1H), 4.26-4.32 (q, J = 7.1 Hz, 2H), 4.15-4.21 (q, J = 7.1 Hz, 2H), 3.86-3.91 (d, J = 21.3 Hz, 2H), 2.31 (s, 3H), 1.27-1.29 (t, J = 7.1 Hz, 3H), 1.19-1.21 (d, J = 7.2 Hz, 3H), 0.88-0.92 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 163.2, 160.8, 145.7, 143.6, 140.0, 133.7, 129.9, 128.0, 121.1, 106.8, 62.6, 62.3, 62.0, 29.6, 21.2, 13.9, 13.8, 13.3; HRMS (Q-TOF, m/z) calcd for C₂₁H₂₃NO₇Na

[M+Na]⁺ 424.1372, found 424.1378.

Trimethyl

1-(4-nitrophenyl)-6-oxo-1,6-dihydropyridine-2,3,4-tricarboxylate (**5aj**): white solid; 96.2 mg; 49% yield; mp 145–149 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.34-8.36 (d, J = 8.8 Hz, 2H), 7.46-7.48 (d, J = 8.8 Hz, 2H), 6.88 (s, 1H), 3.92 (s, 3H), 3.82 (s, 3H), 3.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 163.5, 161.1, 160.1, 148.5, 144.2, 143.4, 141.8, 129.7, 124.8, 122.1, 108.4, 53.6, 53.4, 53.3; HRMS (Q-TOF, m/z) calcd for C₁₇H₁₄N₂O₉Na [M+Na]⁺, 413.0597, found. 413.0591

Trimethyl

6-oxo-1-(3-(trifluoromethyl)phenyl)-1,6-dihydropyridine-2,3,4-tricarboxylate

(**5ak**): white solid; 80.5 mg; 39% yield; mp 92–94 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.9 Hz, 1H), 7.64 (t, *J* = 7.9 Hz, 1H), 7.54 (s, 1H), 7.50 (d, *J* = 8.1 Hz, 1H), 6.86 (s, 1H), 3.93 (s, 3H), 3.81 (s, 3H), 3.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 163.5, 161.2, 160.4, 145.1, 143.5, 137.0, 132.1, 130.2, 129.9, 125.4, 125.1, 121.8, 107.6, 53.4, 53.3, 53.2; ¹⁹F NMR (377 MHz, CDCl₃) δ -63.2; HRMS (Q-TOF, m/z) calcd for C₁₈H₁₄F₃NO₇Na [M+Na]⁺ 436.0620, found 436.0607.

6-1 and 6-2: white solid; ¹H NMR (400 MHz, CDCl₃) δ 9.67 (s, 1H), 7.27 (s, 2H), 7.08 (s, 1H), 6.90 (d, *J* = 6.6 Hz, 2H), 5.39 (s, 1H), 3.73 (s, 3H), 3.68 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 164.9, 148.0, 140.3, 129.2, 124.3, 120.7, 93.6, 52.8,

D-Trimethyl

6-oxo-1-phenyl-1,6-dihydropyridine-2,3,4-tricarboxylate (**D-5aa**): white solid; 137.1 mg; 79% yield; mp 115–117 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.47 (s, 3.00H), 7.25 (d, *J* = 4.4 Hz, 2.00H), 6.83 (s, 0.48H), 3.91 (s, 3.00H), 3.80 (s, 3.00H), 3.48 (s, 3.00H).

D'-Trimethyl

6-oxo-1-phenyl-1,6-dihydropyridine-2,3,4-tricarboxylate (**D'-5aa**): white solid; 180 mg (1 mmol); 51% yield; mp 121 – 122 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.83 (s, 0.17H), 3.92 (s, 2.99H), 3.80 (s, 3.02H), 3.48 (s, 3H); HRMS (Q-TOF, m/z) calcd for C₁₇H₉D₆NO₇Na [M+Na]⁺ 374.1123, found 374.1112.

S24

Electronic Supplementary Material (ESI) for RSC Advances This journal is C The Royal Society of Chemistry 2013

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -12 f1 (ppm) Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013

¹³C NMR (100 MHz, in d₆-Acetone)

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013

¹³C NMR (100 MHz, in CDCl₃)

¹³C NMR (100 MHz, in CDCl₃)

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013

— -110.61

¹⁹F NMR (377 MHz, in CDCl₃)

Electronic Supplementary Material (ESI) for RSC Advances This journal is C The Royal Society of Chemistry 2013

— -63.26

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013

.

Elemental Composition Report

Page 1

()

519

Single Mass Analysis (displaying only valid results) Tolerance = 5.0 PPM / DBE: min = -200.0, max = 200.0 Selected filters: None Monoisotopic Mass, Even Electron Ions Н 13 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-150 N: 1-1 O: 5-5 Na: 1-1 4ad 16:41:50 12092639 31 (0.810) AM (Top,4, Ar,5000.0,475.27,1.00,LS 10); Sm (Mn, 2x1.00); Sb (1,40.00); Cm (31:32) 1: TOF MS ES+ 288.0855 100-1 462.1504 %-366.1432 290.0983 369.2697 463.1573 413.2976 508.1730 ^{553.1986} 286.0889 174.1590 788.6465 m/z 606.1217 659.2773 0 300 200 250 350 400 450 500 550 600 650 700 750 Minimum: -200.0 Μ

Maximum:		5.0	5.0	200.0							
Mass	Calc. Mass	mDa	· PPM	DBE	i-FIT	Form	ula				
288.0855	288.0848	0.7	2.4	6.5	34.7	C13	H15	N	05	Na	

Single Mass Analysis (displaying only valid results) Tolerance = 50.0 PPM / DBE: min = -200.0, max = 200.0

Selected filters: None

Monoisotopic Mass, Even Electron Ions

13 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used:

C: 0-100 H: 0-150 N: 1-1 O: 5-5 Na: 1-1

4a0

12120305 58 (1.476) AM (Top,4, Ar,5000.0,475.27,1.00,LS 10); Sm (Mn, 2x1.00); Sb (1,40.00); Cm (57:64) 304.1153 10:16:24 1: TOF MS ES+ 7.42e3

Ô

Elemental Composition Report Page 1 Single Mass Analysis (displaying only valid results) Tolerance = 5.0 PPM / DBE: min = -200.0, max = 200.0 CI റ Selected filters: None Monoisotopic Mass, Even Electron Ions Н 0 13 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-150 N: 1-1 O: 5-5 Na: 1-1 CI: 1-1 4a 17:19:26 12092642 12 (0.289) AM (Top,4, Ar,5000.0,475.27,1.00,LS 10); Sm (Mn, 2x1.00); Sb (1,40.00); Cm (12:13) 1: TOF MS ES+ 372.0631 1.46e3 100-% 374.0691 721.1191 386.0803 330.1381 724.1279 454.0723 633.1314 536.0894 606.1953 187.0108 269.0111.288.1009 0 200 150 350 250 300 400 450 500 550 600 650 700 Minimum: -200.0 Maximum: 5.0 5.0 200.0 Mass Calc. Mass mDa PPM DBE i-FIT Formula 372.0631 2.1 372.0615 1.6 4.3 9.5 C17 H16 N O5 Na Cl

н Single Mass Analysis (displaying only valid results) O Tolerance = 5.0 PPM / DBE: min = -200.0, max = 200.0 Selected filters: None Monoisotopic Mass, Even Electron Ions \cap Н 13 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-150 N: 1-1 O: 6-6 Na: 1-1 4aK 17:35:45 12092644 48 (1.205) AM (Top,4, Ar,5000.0,475.27,1.00,LS 10); Sm (Mn, 2x1.00); Sb (1,40.00); Cm (48:49) 1: TOF MS ES+ 368.1100 1.90e3 100-% 713.2243 369.1224 714.2449 382.1373 444.1299 542.1883564.2095 588.2342 174.1578 288.0927 330.1391 699.2529 728.2920 0 <u>∽</u> m/z 250 300 450 200 350 400 500 550 600 650 700 750 800 Minimum: -200.0 Maximum: 5.0 5.0 200.0 Calc. Mass PPM Mass mDa DBE i-FIT Formula 368.1100 368.1110 -1.0 -2.7 9.5 2.4 C18 H19 N 06 Na

1

Elemental Composition Report

Page 1

Sin Tole Sele	gle Ma erance ected f	i ss Ar = 5.0 ilters:	n alysis PPM None	(displa / DBE:	ying onl min = -2	y valid r 200.0, ma	esult ax = 2	ts) 200.0	/				
Mon 13 fo Elen C: 0	oisotopi ormula(e nents Us -100 H	c Mass) evalu ed: 1: 0-150	, Even El ated with N: 1-1	ectron lo 1 results O: 6-6	ns s within lim Na: 1-1	its (all resu	ılts (up	o to 1000) f	or each n	nass)	H	II O	
4a 1209 100-	2645 67 (1	.741) AN	I (Тор,4, А	r,5000.0,47 368.	′5.27,1.00,LS 1098	6 10); Sm (Mr	n, 2x1.0	0); Sb (1,40.0	0); Cm (66	::67)		1: TO	17:50:38 F MS ES+ 1.64e3
- - - -					369.1118								
- - 0	187.0112	╺╺╺╺╶┍╶┝╌┝╌┯╌┯╼	313.9847	366.1405	370.0843	450.1261	6	532.0864	614.10	54	713.238	32 15.1940	795,1369
	200	250	300	350	400	450	500	550	600	650	700	750	₩₩₩ ₩/Ż
Mini Maxi				5.0	5.0	-200 200.	0.0						
Mass	1	Calc.	Mass	mDa	PPM	DBE		i-FIT	Formu	la			
368.	1098	368.1	110	-1.2	-3.3	9.5		36.2	C18	H19 N	06 Na		

Page 1

⁺ Elemental Composition Report

Single Mass Analysis (d Tolerance = 5.0 PPM / Selected filters: None	isplaying DBE: min	only vali = -200.0,	d results max = 2())0.0				H	
Monoisotopic Mass, Even Elect 12 formula(e) evaluated with 1 Elements Used: C: 0-100 H: 0-150 N: 1-1 4a) 12 92647 77 (1.963) AM (Top,4, Ar,50	tron lons results within O: 5-5 Na: 000.0,475.27,1.	n limits (all r 1-1 00,LS 10); Sm	results (up 1 n (Mn, 2x1.00)	to 1000) for ; Sb (1,40.00);	each mass Cm (76:77))	0	H 1: TC	18:01:47
100 366.1311 %-		709.	2647 710.2969		1.10e3				
367.140 140.1278 349.0880 448 0 200 300 400	08 .1315 530.1 	159 600 70	711.2724 791.3197 0 800	857.6702 900	1052.470 1000 1	2 100	1200	1300	1395.4474 m/z
Minimum: Maximum:	5.0	5.0 2	-200.0 200.0						
Mass Calc. Mass	mDa :	PPM I	DBE i	L-FIT	Formula	NO	5 No.		

Single Mass Analysis (displaying only valid results)

Tolerance = 50.0 PPM / DBE: min = -200.0, max = 200.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions

13 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used:

C: 0-100 H: 0-150 N: 1-1 O: 5-5 Na: 1-1

tap 4ag

12092704 57 (0.967) AM (Top,4, Ar,5000.0,475.27,1.00,LS 10); Sm (Mn, 2x1.00); Sb (1,40.00); Cm (35:38)

338.1020 5.70e3 100-% 339.1021 653.2051 366.1368 654.2232735.2045 817.1829 968.3132 1006.9879 1082.4982 m/z 639.1843 186.9999 268.9901 433.0152 0 200 300 400 500 600 700 800 900 1000 1100 Minimum: -200.0 Maximum: 5.0 50.0 200.0 Calc. Mass Mass mDa PPM DBE i-FIT Formula 338.1020 338.1004 1.6 4.7 9.5 4.6 C17 H17 N O5 Na

uge i

09:49:49

1: TOF MS ES+

н

Ł

Elemental Composition Report

Page 1

Page 1

10:30:22

Single Mass Analysis (displaying only valid results)

Tolerance = 50.0 PPM / DBE: min = -200.0, max = 200.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions

13 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used:

C: 0-100 H: 0-150 N: 2-2 O: 10-10 Na: 1-1

4au

12120307 78 (1.970) AM (Top,4, Ar,5000.0,475.27,1.00,LS 10); Sm (Mn, 2x1.00); Sb (1,40.00); Cm (77:78)

1: TOF MS ES+ 499.1335 269.0082 100 2.45e3 515.0210 433.0186 %-597.0085 679.0342 186,9997 843.0486 485.1175 270.0243 351.0095 516.0230 761.0438 243.1206 598.0216 680.0163 844.0334 122.0589 762.0240 356.0893 517.0015 0------ m/z 150 200 250 300 350 400 450 500 550 600 650 700 750 850 800 Minimum: -200.0Maximum: 5.0 50.0 200.0 Mass Calc. Mass mDa PPM DBE i-FIT Formula 499.1335 499.1329 0.6 1.2 11.5 14.7 C22 H24 N2 O10 Na

Single Mass Analysis (displaying only valid results) Tolerance = 5.0 PPM / DBE: min = -200.0, max = 200.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions

13 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used:

C: 0-120 H: 0-150 N: 1-1 O: 7-7 Na: 1-1

CQX-1

100

13032802 51 (0.952) AM (Cen,2, 80.00, Ht,5000.0,0.00,1.00); Sm (Mn, 2x1.00); Cm (51:70) 368.0740

09:59:45 1: TOF MS ES+ 5.20e3

% 189.0737 268.1125 319.0420			369.0789 379.0479 493.0272 525.0048			713.1385 619.5125			811.0461 ^{838.1450}	
150	0 200 250	300 350	400	450 500	550	600 650	700	750	800	850 m/z
Minimum: Maximum:		5.0	5.0	-200.0 200.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formu	la			
368.0740	368.0746	-0.6	-1.6	10.5	28.2	C17 H	H15 N	07 Na		

Single Mass Analysis (displaying only valid results) Tolerance = 5.0 PPM / DBE: min = -200.0, max = 200.0 Selected filters: None Monoisotopic Mass, Even Electron Ions 13 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-120 H: 0-150 N: 1-1 O: 7-7 Na: 1-1 COX-2 10:29:17 13032803 55 (1.023) AM (Cen,2, 80.00, Ht,5000.0,0.00,1.00); Sm (Mn, 2x1.00); Cm (44:55) 1: TOF MS ES+ 382.0908 3.11e3 100 % 741.1704 383.0961 742.1761 743.1785 384.0983 825.0660851.1307 189.0744 492.0166511.0100 268,1144 727.1615 340.2883 619,4962 0 -m/z150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 Minimum: -200.0 Maximum: 5.0 5.0 200.0 Mass Calc. Mass PPM mDa DBE i-FIT Formula 382.0908 382.0903 0.5 1.3 10.5 1.9 C18 H17 N O7 Na

Single Mass Analysis (displaying only valid results)

Tolerance = 5.0 PPM / DBE: min = -200.0, max = 200.0 Selected filters: None

Monoisotopic Mass, Even Electron Ions

13 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used:

C: 0-120 H: 0-150 N: 1-1 O: 7-7 Na: 1-1

CQX-4

13032805 36 (0.669) AM (Cen,2, 80.00, Ht,5000.0,0.00,1.00); Sm (Mn, 2x1.00); Cm (28:36)

10:39:41 1: TOF MS ES+ 6.46e3

100					002.0000								0.4065
0/6													
, , , , , , , , , , , , , , , , , , ,					383.09	94					741 1775		
0	132.92	10 189.07	⁷⁶⁸ 269.0	096 340	2919 4	40.0990 <u>4</u>	64.0970	546.0	920 631.1847	, 671.17	742 742	.1833	9.1774851.0983 m/z
	150	200	250	300	350 400	450	500	550	600 65	0 700) 750	800	850
Mini Maxi	mum: mum:			5.0	5.0	-20 200	0.0 .0						
Mass		Calc.	Mass	mDa	PPM	DBE		i-FIT	Formu	ıla			
382.	0906	382.09	903	0.3	0.8	10.	5	4.5	C18	H17 N	07 Na	à	

Elemental Composition Report Page 1 Br Single Mass Analysis (displaying only valid results) 0 Tolerance = 5.0 PPM / DBE: min = -200.0, max = 200.0 **o**-Selected filters: None Ο Monoisotopic Mass, Even Electron Ions 0 13 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) 0 Ο Elements Used: C: 0-120 H: 0-150 N: 1-1 O: 7-7 Na: 1-1 Br: 1-1 CQX-7 10:57:16 13032808 51 (0.950) AM (Cen,2, 80.00, Ht,5000.0,0.00,1.00); Sm (Mn, 2x1.00); Cm (43:52) 1: TOF MS ES+ 447.9843 574 100 % 870.9552 448.9868 868,9552 872,9605 132.9217 980.8901 1044.4753 269.0049.301.1436 529.9827 557.9005 647.5509 873.9924 776.9864 0 m/z 300 400 200 500 800 600 700 900 1000 1100 Minimum: -200.0 Maximum: 5.0 5.0 200.0 Mass Calc. Mass mDa PPM DBE i-FIT Formula 445.9858 445.9851 0.7 1.6 10.5 0.1 C17 H14 N O7 Na Br

Single Mass Analysis (displaying only valid results) Tolerance = 5.0 PPM / DBE: min = -200.0, max = 200.0 Selected filters: None									
Monoisotopic Mass, Even Electron Ions 13 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-120 H: 0-150 N: 1-1 O: 8-8 Na: 1-1 CQX-8 13032809 32 (0.594) AM (Cen.2, 80.00, Ht.5000, 0.00, 1.00); Sm (Mn, 2x1.00); Cm (22:33)									
100 41	2.1015		2.41e3						
%		801.1905							
-	413.1075	802.1958	802.1958						
132.9214 269.0057 <u>351.0038</u>	414.1064522.0132	803.1982 79.0132 911.05	803.1982 911.0942 992.9356 ^{1032.3379}						
200 300 4	00 500 600	700 800 900	1000 1100						
Minimum: Maximum: 5.	-200.0 5.0 200.0								
Mass Calc. Mass mD	a PPM DBE	i-FIT Formula							
412.1015 412.1008 0.	7 1.7 10.5	0.6 C19 H19 N	08 Na						

Single Mass Analysis

Tolerance = 50.0 PPM / DBE: min = -1.5, max = 150.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 4 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-150 H: 0-150 N: 1-1 O: 7-7 F: 3-3 Na: 1-1 CQX-1 13042007 2 (0.033) AM (Cen,2, 80.00, Ht,5000.0,0.00,1.00); Sm (Mn, 2x3.00); Cm (1:4)

09:43:19 1: TOF MS ES+ 2.64e+003

Page 1

We used the slow evaporation method to grow the crystals of **4aq**. We first prepared a saturated solution of compound **4aq**, employing petroleum ether/ethyl acetate (4:1, v/v) as the solvent. Then the solution was transferred to a clean bottle and covered, with a few small holes in the cover. After that the bottle was placed in a quiet out of the way place. A few days later, the crystals of **4aq** were obtained. CCDC (**4aq**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.