Highly enantioselctive direct vinylogous Michael addition of

 γ -substituted deconjugated butenolides to maleimides catalyzed by chiral

squaramides

Yun-Long Guo,^{a,b} Li-Na Jia,^{a,b} Lin Peng,^a Liang-Wen Qi,^{a,b} Jing Zhou,^{a,b} Fang Tian,^a Xiao-Ying Xu,*^a Li-Xin Wang,*^a
^a Key Laboratory of Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu
Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, PR China;
^b University of Chinese Academy of Sciences, Beijing 100039, PR China wlxioc@cioc.ac.cn, xuxy@cioc.ac.cn

Contents

General Methods	S2
General procedure for the direct vinylogous Michael addition	S2
Characterization of products	
Copies of HPLC spectra	S16
Copies of NMR spectra	S36

General Methods

Commercial grade solvent was dried and purified by standard procedures as specified in Purification of Laboratory Chemicals, 4th Ed (Armarego, W. L. F.; Perrin, D. D. Butterworth Heinemann: 1997). NMR spectras were recorded with tetramethylsilane as the internal standard. ¹H NMR spectras were recorded at 300 MHz, and ¹³C NMR spectras were recorded at 75 MHz (Bruker Avance). Chemical shifts (δ) are reported in ppm downfield from CDCl₃ (δ = 7.26 ppm) for ¹H NMR and relative to the central CDCl₃ resonance (δ = 77.0 ppm) for ¹³C NMR spectroscopy. Flash column chromatography was carried out using silica gel eluting with ethyl acetate and petroleum ether. High-resolution mass spectra were obtained with the microTOF-Q mass spectrometer. Reactions were monitored by TLC and visualized with ultraviolet light. Enantiomeric excess was determined by HPLC analysis on chiralpak AD-H and IC-H columns.

The catalysts **4a-f**¹ and γ -substituted deconjugated butenolides² were synthesized according to the literature.

General procedure for the direct vinylogous Michael addition

Catalyst **4b** (1 mol %), maleimides **1** (0.22 mmol) and γ -substituted deconjugated butenolides **2** (0.2 mmol) were dissolved in 0.3 mL DCM at 30 °C and stirred for 5-96 h. The reaction was monitored by TLC analysis. The reaction mixture was directly subjected to flash column chromatography on silica gel (petroleum ether/ethyl acetate) to furnish the corresponding products **3**.

Characterization of products

3-(5-oxo-2-phenyl-2,5-dihydrofuran-2-yl)-1-phenylpyrrolidine-2,5-dione (3a)

White solid, $[\alpha]_D^{20} = +249.0$ (c 0.3, CH₂Cl₂), yield 96 %; 82:18 dr, Enantiomeric excess: 97 %, determined by HPLC (Chiralcel AD-H column, hexane/*i*-propanol= 70/30, flow rate 0.8 mL/min, 35 °C, UV detection at 220 nm), t_R (major) = 15.4 min, t_R (minor) =18.7 min. ¹H NMR (300 MHz, CDCl₃) δ 8.42 (d, J = 5.7 Hz, 1H), 7.46-7.36 (m, 8H), 7.02-6.98 (m, 2H), 6.21 (d, J = 5.6 Hz, 1H), 3.42 (dd, J = 4.7, 8.7Hz, 1H), 3.09-2.89 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 174.0, 173.8, 170.4, 158.1, 133.7, 131.1, 129.5, 129.2, 129.2, 129.0, 126.2, 125.8, 120.2, 89.1, 50.5, 30.9; HRMS (ESI) calcd. for C₂₀H₁₅NNaO₄ [M+Na]⁺: 356.0893; found: 356.0892 1-(4-fluorophenyl)-3-(5-oxo-2-phenyl-2,5-dihydrofuran-2-yl)pyrrolidine-2,5-dione (**3b**)

White solid, $[\alpha]_D^{20} = +220.7$ (c 0.3, CH₂Cl₂), yield 95 %; 74:26 dr, Enantiomeric excess: 96 %, determined by HPLC (Chiralcel AD-H column, hexane/*i*-propanol= 70/30, flow rate 0.8 mL/min, 35 °C, UV detection at 220 nm), t_R (minor) = 14.7 min, t_R (major) =17.6 min. ¹H NMR (300 MHz, CDCl₃) δ 8.40 (d, J = 5.7 Hz, 1H), 7.44-7.39 (m, 5H), 7.14-7.08 (m, 2H), 7.01-6.95 (m, 2H), 6.22 (d, J = 5.7 Hz, 1H), 3.43 (dd, J = 4.7, 8.7 Hz, 1H), 3.09-2.89 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 173.9, 173.7, 170.4, 163.9 (J = 247.8 Hz), 157.9, 133.7, 129.5, 129.2, 128.1 (J = 8.7

Hz), 126.9, 125.7, 120.3, 116.4 (J = 22.8 Hz), 89.0, 50.3, 30.8; **HRMS** (EI) calcd. for $C_{20}H_{14}NO_4F [M]^+$: 351.0907; found: 351.0913

1-(4-chlorophenyl)-3-(5-oxo-2-phenyl-2,5-dihydrofuran-2-yl)pyrrolidine-2,5-dione

(**3c**)

White solid, $[a]_{D}^{20} = +228.0$ (c 0.3, CH₂Cl₂), yield 96 %; 78:22 dr, Enantiomeric excess: 96 %, determined by HPLC (Chiralcel AD-H column, hexane/*i*-propanol= 70/30, flow rate 0.8 mL/min, 35 °C, UV detection at 220 nm), t_R (minor) = 16.9 min, t_R (major) =21.0 min. ¹H NMR (300 MHz, CDCl₃) δ 8.39 (d, J = 5.7 Hz, 1H), 7.44-7.38 (m, 7H), 6.97 (d, J = 8.6 Hz, 2H), 6.22 (d, J = 5.7 Hz, 1H), 3.43 (dd, J = 4.7, 8.7 Hz, 1H), 3.09-2.89 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 173.7, 173.4, 170.3, 157.9, 134.8, 133.6, 129.5, 129.4, 129.2, 127.4, 125.7, 124.4, 120.3, 88.9, 50.4, 30.8; HRMS (EI) calcd. for C₂₀H₁₄NO₄Cl [M]⁺: 367.0611; found: 367.0616 1-(4-nitrophenyl)-3-(5-oxo-2-phenyl-2,5-dihydrofuran-2-yl)pyrrolidine-2,5-dione (**3d**)

Light yellow solid, $[\alpha]_D^{20} = +164.2$ (c 0.24, CH₂Cl₂), yield 94 %; 81:19 dr, Enantiomeric excess: 95 %, determined by HPLC (Chiralcel AD-H column,

hexane/*i*-propanol= 70/30, flow rate 0.8 mL/min, 35 °C, UV detection at 220 nm), t_R (minor) = 24.6 min, t_R (major) =33.9 min. ¹**H NMR** (300 MHz, CDCl₃) δ 8.37 (d, *J* = 5.7 Hz, 1H), 8.29 (d, *J* = 8.0 Hz, 2H), 7.41 (m, 5H), 7.29 (d, *J* = 8.9 Hz, 2H), 6.25 (d, *J* = 5.6 Hz, 1H), 3.50 (dd, *J* = 4.6, 8.8 Hz, 1H), 3.15-2.94 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 173.2, 172.8, 170.2, 157.6, 147.1, 136.5, 133.6, 129.6, 129.3, 126.8, 125.6, 124.0, 120.6, 88.8, 50.3, 30.9; **HRMS** (EI) calcd. for C₂₀H₁₄N₂O₆ [M]⁺: 378.0852; found: 378.0848

1-(4-methoxyphenyl)-3-(5-oxo-2-phenyl-2,5-dihydrofuran-2-yl)pyrrolidine-2,5-dione (**3e**)

White solid, $[a]_{D}^{20} = +211.3$ (c 0.3, CH₂Cl₂), yield 96 %; 77:23 dr, Enantiomeric excess: 96 %, determined by HPLC (Chiralcel AD-H column, hexane/*i*-propanol= 70/30, flow rate 0.8 mL/min, 35 °C, UV detection at 220 nm), t_R (minor) = 19.3 min, t_R (major) =20.2 min. ¹H NMR (300 MHz, CDCl₃) δ 8.42 (d, J = 5.6 Hz, 1H), 7.42-7.39 (m, 5H), 6.95-6.88 (m, 4H), 6.21 (d, J = 5.6 Hz, 1H), 3.80 (s, 3H), 3.40 (dd, J = 4.7, 8.7 Hz, 1H), 3.06-2.87 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 174.3, 174.1, 170.4, 159.7, 158.1, 133.7, 129.4, 129.2, 127.4, 125.7, 123.6, 120.1, 114.5, 89.1, 55.4, 50.4, 30.8; HRMS (EI) calcd. for C₂₁H₁₇NO₅ [M]⁺: 363.1107; found: 363.1115 1-(4-bromoxyphenyl)-3-(5-oxo-2-phenyl-2,5-dihydrofuran-2-yl)pyrrolidine-2,5-dione (**3f**)

White solid, $[\alpha]_{D}^{20} = +214.1$ (c 0.34, CH₂Cl₂), yield 93 %; 77:23 dr, Enantiomeric excess: 96 %, determined by HPLC (Chiralcel AD-H column, hexane/*i*-propanol= 70/30, flow rate 0.8 mL/min, 35 °C, UV detection at 220 nm), t_R (major) = 18.1 min, t_R (minor) =20.9 min. ¹H NMR (300 MHz, CDCl₃) δ 8.39 (d, J = 5.6 Hz, 1H), 7.56 (d, J = 8.4 Hz, 2H), 7.41 (s, 5H), 6.91 (d, J = 8.5 Hz, 2H), 6.22 (d, J = 5.5 Hz, 1H), 3.43 (dd, J = 4.7, 8.7 Hz, 1H), 3.08-2.89 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 173.7, 173.4, 170.4, 157.9, 133.7, 132.4, 130.0, 129.5, 129.2, 127.7, 125.7, 122.9, 120.3, 89.0, 50.4, 30.8; HRMS (EI) calcd. for C₂₀H₁₄NO₄Br [M]⁺: 411.0106; found: 411.0106

3-(5-oxo-2-phenyl-2,5-dihydrofuran-2-yl)-1-*p*-tolylpyrrolidine-2,5-dione (**3g**)

White solid, $[\alpha]_D^{20} = +214.1$ (c 0.34, CH₂Cl₂), yield 95 %; 81:19 dr, Enantiomeric excess: 97 %, determined by HPLC (Chiralcel AD-H column, hexane/*i*-propanol= 70/30, flow rate 0.8 mL/min, 35 °C, UV detection at 220 nm), t_R (major) = 15.1 min, t_R (minor) =17.5 min. ¹H NMR (300 MHz, CDCl₃) δ 8.43 (d, J = 5.6 Hz, 1H), 7.45-7.39 (m, 5H), 7.24 (d, J = 8.1 Hz, 2H), 6.88-6.21 (d, J = 5.6 Hz, 1H), 3.41 (dd, J = 4.7, 8.6 Hz, 1H), 3.08-2.88 (m, 2H), 2.36 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 174.2, 173.9, 170.5, 158.2, 139.1, 133.7, 129.8, 129.5, 129.2, 128.4, 126.0, 125.8, 120.2, 89.1, 50.5, 30.8, 21.1; **HRMS** (EI) calcd. for C₂₁H₁₇NO₄ [M]⁺: 347.1158; found: 347.1158

1-(3-nitrophenyl)-3-(5-oxo-2-phenyl-2,5-dihydrofuran-2-yl)pyrrolidine-2,5-dione (**3h**)

Light yellow solid, yield 93 %; 82:18 dr, Enantiomeric excess: 92 %, determined by HPLC (Chiralcel IC-H column, hexane/*i*-propanol=50/50, flow rate 0.7 mL/min, 35 °C, UV detection at 220 nm), t_R (minor) = 32.3 min, t_R (minor) =36.4 min. ¹H NMR (300 MHz, CDCl₃) δ 8.38 (d, *J* = 5.6 Hz, 1H), 8.24 (d, *J* = 7.8 Hz, 1H), 7.93 (s, 1H), 7.64-7.58 (m, 1H), 7.48-7.39 (m, 6H), 6.24 (d, *J* = 5.7 Hz, 1H), 3.51 (dd, *J* = 4.6, 8.9 Hz, 1H), 3.14-3.00 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 173.4, 173.0, 170.3, 158.5, 148.3, 132.2, 130.0, 129.7, 129.1, 125.7, 124.4, 123., 121.6, 120.6, 119.1, 88.8, 50.3, 30.9; HRMS (EI) calcd. for C₂₀H₁₄N₂O₆ [M]⁺: 378.0852; found: 378.0856 1-(3-fluorophenyl)-3-(5-oxo-2-phenyl-2,5-dihydrofuran-2-yl)pyrrolidine-2,5-dione (**3i**)

White solid, $[\alpha]_D^{20} = +228.4$ (c 0.33, CH₂Cl₂), yield 95 %; 81:19 dr, Enantiomeric

excess: 96 %, determined by HPLC (Chiralcel IC-H column, hexane/*i*-propanol= 70/30, flow rate 0.7 mL/min, 35 °C, UV detection at 220 nm), t_R (major) = 14.8 min, t_R (minor) =23.4 min. ¹H NMR (300 MHz, CDCl₃) δ 8.40 (d, *J* = 5.7 Hz, 1H), 7.42-7.36 (m, 6H), 7.10-7.09 (m, 1H), 6.84-6.74 (m, 2H), 6.22 (d, *J* = 5.7 Hz, 1H), 3.43 (dd, *J* = 4.7, 8.7 Hz, 1H), 3.09-2.90 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 173.6, 173.5, 170.3,164.1 (*J* = 246.6), 157.9, 133.6, 132.3 (*J* = 9.9 Hz), 130.4 (*J* = 8.7 Hz), 129.6, 129.2, 125.7, 121.9 (*J* = 3.3 Hz), 120.3, 116.2 (*J* = 20.8 Hz), 114.0 (*J* = 24.1 Hz), 88.9, 50.4, 30.8; **HRMS** (EI) calcd. for C₂₀H₁₄NO₄F [M]⁺: 351.0907; found: 351.0900

1-(3-bromophenyl)-3-(5-oxo-2-phenyl-2,5-dihydrofuran-2-yl)pyrrolidine-2,5-dione

(**3**j)

White solid, $[a]_{D}^{20} = +189.1$ (c 0.33, CH₂Cl₂), yield 91 %; 78:22 dr, Enantiomeric excess: 94 %, determined by HPLC (Chiralcel AD-H column, hexane/*i*-propanol= 50/50, flow rate 0.6 mL/min, 35 °C, UV detection at 220 nm), t_R (major) = 13.3 min, t_R (minor) =20.4 min. ¹H NMR (300 MHz, CDCl₃) δ 8.39 (d, J = 5.3 Hz, 1H), 7.50 (d, J = 7.9 Hz, 1H), 7.42 (m, 5H), 7.32-7.27 (m, 1H), 7.16 (s, 1H), 6.97 (d, J = 7.9 Hz, 1H), 6.22 (d, J = 5.3 Hz, 1H), 3.43 (dd, J = 4.7, 8.6 Hz, 1H), 3.09-2.90 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 173.6, 173.3, 170.3, 157.9, 133.6, 132.2, 132.0, 130.3, 129.6, 129.3, 129.2, 125.7, 124.9, 122.4, 120.3, 88.9, 50.4, 30.8; HRMS (EI) calcd. for C₂₀H₁₄NO₄Br [M]⁺: 411.0106; found: 411.0126

3-(5-oxo-2-phenyl-2,5-dihydrofuran-2-yl)-1-*m*-tolylpyrrolidine-2,5-dione (**3k**)

White solid, $[\alpha]_D^{20} = +220.3$ (c 0.3, CH₂Cl₂), yield 93 %; 80:20 dr, Enantiomeric excess: 97 %, determined by HPLC (Chiralcel IC-H column, hexane/*i*-propanol= 50/50, flow rate 0.7 mL/min, 35 °C, UV detection at 220 nm), t_R (major) = 22.9 min, t_R (minor) = 37.4 min. ¹H NMR (300 MHz, CDCl₃) δ 8.42 (d, *J* = 5.3 Hz, 1H), 7.42 (s, 5H), 7.34-7.29 (m, 1H), 7.21-7.19 (m, 1H), 6.79 (s, 2H), 6.21 (dd, *J* = 4.3, 7.6 Hz, 1H), 3.08-2.88 (m, 2H), 2.35 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 174.1, 173.9, 170.5, 158.1, 139.3, 133.7, 130.9, 129.8, 128.4, 129.2, 129.0, 126.8, 125.8, 123.3, 120.1, 8.1, 50.4, 30.8, 21.1; HRMS (EI) calcd. for C₂₁H₁₇NO₄ [M]⁺: 347.1158; found: 347.1162

1-(2-fluorophenyl)-3-(5-oxo-2-phenyl-2,5-dihydrofuran-2-yl) pyrrolidine-2,5-dione

White solid, $[\alpha]_{D}^{20} = +173.0$ (c 0.3, CH₂Cl₂), yield 88 %; 79:21 dr, Enantiomeric excess: 95 %, determined by HPLC (Chiralcel IC-H column, hexane/*i*-propanol= 50/50, flow rate 0.7 mL/min, 35 °C, UV detection at 220 nm), t_R (major) = 22.1 min,

 $t_R \text{ (minor)} = 36.5 \text{ min.} {}^1\mathbf{H} \mathbf{NMR} (300 \text{ MHz, CDCl}_3) \delta 8.41 (s, 1H), 7.44-7.41 (m, 6H), 7.22-7.16 (m, 3H), 6.21 (d, <math>J = 5.3 \text{ Hz}, 1H$), 3.46 (s, 1H), 3.15-2.91 (m, 2H); ${}^{13}\mathbf{C}$ **NMR** (75 MHz, CDCl}_3) δ 173.2, 173.0, 170.4, 158.8 (J = 251.7 Hz), 158.3, 157.9, 133.7, 131.3 (J = 7.8 Hz), 129.5, 128.7, 125.7, 124.6 (J = 3.7 Hz), 120.3 (J = 13.6 Hz), 119.0 (J = 13.2 Hz), 116.8 (J = 19.2 Hz), 89.0, 50.8 (J = 24.5 Hz), 31.0; **HRMS** (EI) calcd. for C₂₀H₁₄NO₄F [M]⁺: 351.0907; found: 351.0927

1-methyl-3-(5-oxo-2-phenyl-2,5-dihydrofuran-2-yl)pyrrolidine-2,5-dione (3m)

White solid, $[\alpha]_{D}^{20} = +233.8$ (c 0.2, CH₂Cl₂), yield 82 %; 44:56 dr, Enantiomeric excess: 95 %, determined by HPLC (Chiralcel AD-H column, hexane/*i*-propanol= 70/30, flow rate 0.8 mL/min, 35 °C, UV detection at 220 nm), t_R (major) = 9.4 min, t_R (minor) = 10.1 min. ¹H NMR (300 MHz, CDCl₃) δ 8.39 (d, *J* = 5.6 Hz, 1H), 7.35 (s, 5H), 6.19 (d, *J* = 5.6 Hz, 1H), 3.27 (dd, *J* = 4.5, 8.7 Hz, 1H), 2.91 (dd, *J* = 8.9, 18.6 Hz, 1H), 2.85 (s, 3H), 2.75 (dd, *J* = 4.6, 18.6 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 175.0, 174.8, 170.5, 158.2, 133.8, 129.3, 129.1, 125.5, 120.1, 89.1, 50.4, 30.6, 24.9; HRMS (EI) calcd. for C₁₅H₁₃NO₄ [M]⁺: 271.0845; found: 271.0847

3-(2-(4-fluorophenyl)-5-oxo-2,5-dihydrofuran-2-yl)-1-phenylpyrrolidine-2,5-dione
(3n)

White solid, yield 80 %; 75:25 dr, Enantiomeric excess: 95 %, determined by HPLC (Chiralcel IC-H column, hexane/*i*-propanol= 50/50, flow rate 0.7 mL/min, 35 °C, UV detection at 220 nm), t_R (major) = 18.8 min, t_R (minor) = 34.7 min. ¹H NMR (300 MHz, d-DMSO) δ 8.46 (d, *J* = 5.5 Hz, 1H), 7.70-7.40 (m, 5H), 7.32-7.27 (m, 2H), 7.12 (d, *J* = 7.3 Hz, 2H), 6.48 (d, *J* = 5.5 Hz, 1H), 3.94 (d, *J* = 5.0 Hz, 1H), 3.01-2.87 (m, 1H), 2.61-2.55 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 174.2, 173.8, 170.8, 163.7 (*J* = 244.1 Hz), 157.6, 132.6, 131.9 (*J* = 3.0 Hz), 129.0, 128.5, 128.2 (*J* = 8.5 Hz), 126.8, 121.3, 115.8 (*J* = 21.5 Hz), 89.2, 47.5, 30.8; HRMS (EI) calcd. for C₂₀H₁₄NO₄F [M]⁺: 351.0907; found: 351.0911

3-(2-(4-chlorophenyl)-5-oxo-2,5-dihydrofuran-2-yl)-1-phenylpyrrolidine-2,5-dione (30)

White solid, yield 86 %; 77:23 dr, Enantiomeric excess: 94 %, determined by HPLC (Chiralcel IC-H column, hexane/*i*-propanol= 50/50, flow rate 0.7 mL/min, 35 °C, UV detection at 220 nm), t_R (major) = 20.3 min, t_R (minor) = 39.4 min. ¹H NMR (300 MHz, d-DMSO) δ 8.35 (d, J = 5.4 Hz, 1H), 7.56-7.44 (m, 7H), 7.17-7.11 (m, 2H),

6.33 (d, *J* = 5.4 Hz, 1H), 3.88 (dd, *J* = 3.6, 8.7 Hz, 1H), 3.05-2.96 (m, 1H), 2.54 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 173.6, 173.3, 170.1, 157.3, 134.3, 133.8, 131.4, 128.8, 128.6, 128.1, 127.1, 126.3, 120.5, 88.6, 47.7, 30.4; **HRMS** (EI) calcd. for C₂₀H₁₄NO₄Cl [M]⁺: 367.0611; found: 367.0633

3-(2-(4-bromophenyl)-5-oxo-2, 5-dihydrofuran-2-yl)-1-phenyl pyrrolidine-2, 5-dione and 1-phenyl pyrr

White solid, yield 83 %; 78:22 dr, Enantiomeric excess: 95 %, determined by HPLC (Chiralcel IC-H column, hexane/*i*-propanol= 50/50, flow rate 0.7 mL/min, 35 °C, UV detection at 220 nm), t_R (major) = 22.0 min, t_R (minor) = 43.3 min. ¹H NMR (300 MHz, d-DMSO) δ 8.41 (d, J = 5.3 Hz, 1H), 7.67 (d, J = 8.0 Hz, 2H), 7.50-7.40 (m, 5H), 7.14 (d, J = 7.2 Hz, 2H), 6.49 (d, J = 5.5 Hz, 1H), 3.98 (dd, J = 3.8, 9.0 Hz, 1H), 3.02-2.88 (m, 1H), 2.58-2.54 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 174.2, 173.7, 170.9, 157.6, 135.8, 131.7, 129.0, 128.5, 128.0, 127.4, 126.8, 122.1, 121.3, 89.2, 47.1, 30.8; HRMS (EI) calcd. for C₂₀H₁₄NO₄Br [M]⁺: 411.0106; found: 411.0110 3-(5-oxo-2-*p*-tolyl-2,5-dihydrofuran-2-yl)-1-phenylpyrrolidine-2,5-dione (**3q**)

White solid, yield 87 %; 79:21 dr, Enantiomeric excess: 97 %, determined by HPLC (Chiralcel IC-H column, hexane/*i*-propanol= 50/50, flow rate 0.7 mL/min, 35 °C, UV detection at 220 nm), t_R (major) = 24.3 min, t_R (minor) = 46.3 min. ¹H NMR (300 MHz, CDCl₃) δ 8.41 (d, J = 5.7 Hz, 1H), 7.48-7.39 (m, 3H), 7.34-7.31 (m, 2H), 7.22-7.04 (m, 2H), 7.03 (d, J = 6.7 Hz, 2H), 6.19 (d, J = 5.7 Hz, 1H), 3.40 (dd, J = 4.9, 8.6 Hz, 1H), 3.09-2.90 (m, 2H), 2.35 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 174.1, 173.9, 170.6, 158.3, 139.6, 131.2, 130.7, 129.9, 129.2, 129.0, 126.2, 125.6, 120.0, 89.2, 50.5, 30.9, 21.0; HRMS (ESI) calcd. for C₂₁H₁₇NNa₄ [M+Na]: 370.1050; found: 370.1036

3-(2-(2,5-dimethylphenyl)-5-oxo-2,5-dihydrofuran-2-yl)-1-phenylpyrrolidine-2,5-dio ne (**3r**)

White solid, yield 96 %; 77:23 dr, Enantiomeric excess: 97 %, determined by HPLC (Chiralcel IC-H column, hexane/*i*-propanol= 50/50, flow rate 0.7 mL/min, 35 °C, UV detection at 220 nm), t_R (major) = 21.0 min, t_R (minor) = 28.2 min. ¹H NMR (300 MHz, CDCl₃) δ 8.25 (d, *J* = 5.7 Hz, 1H), 7.47-7.36 (m, 3H), 7.14-7.06 (m, 5H), 6.28 (d, *J* = 5.6 Hz, 1H), 3.63 (dd, *J* = 4.5, 9.0 Hz, 1H), 3.05 (dd, J = 9.2, 18.6 Hz, 1H), 2.79 (dd, J = 4.5, 18.6 Hz, 1H), 2.56 (s, 3H); 2.27 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 173.7, 173.6, 170.5, 157.1, 136.0, 133.8, 132.4, 131.3, 12.9, 129.1, 128.9, 127.4, 127.0, 126.3, 121.3, 91.2, 4.2, 31.1, 22.3, 20.9; HRMS (EI) calcd. for C₂₂H₁₉NNaO₄

[M+Na]: 384.1206; found: 384.1195

3-(2-(naphthalene-2-yl)-5-oxo-2,5-dihydrofuran-2-yl)-1-phenylpyrrolidine-2,5-dione (3s)

White solid, yield 95 %; 78:22 dr, Enantiomeric excess: 97 %, determined by HPLC (Chiralcel IC-H column, hexane/*i*-propanol= 50/50, flow rate 0.7 mL/min, 35 °C, UV detection at 220 nm), t_R (major) = 25.4 min, t_R (minor) = 46.4 min. ¹H NMR (300 MHz, CDCl₃) δ 8.54 (d, J = 5.7 Hz, 1H), 7.97-7.84 (m, 4H), 7.57-7.54 (m, 6H), 6.98-6.95 (m, 2H), 6.25 (d, J = 5.7 Hz, 1H), 3.51 (dd, J = 5.0, 8.4 Hz, 1H), 3.13-2.90 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 174.2, 173.6, 170.5, 158.2, 133.2, 133.0, 131.1, 129.7, 129.2, 129.2, 128.9, 128.3, 127.6, 127.3, 127.2, 126.9, `125.6, 122.4, 120.2, 89.4, 50.6, 31.0; HRMS (ESI) calcd. for C₂₄H₁₇NNaO₄ [M+Na] 406.1050; found: 406.1049

Colorless oil, yield 92 %; 68:32 dr, Enantiomeric excess: 83 %, determined by HPLC (Chiralcel IC-H column, hexane/ethanol= 90/10, flow rate 1.5 mL/min, 35 °C, UV detection at 210 nm), t_R (major) = 33.2 min, t_R (minor) = 47.9 min. ¹H NMR (300 MHz, CDCl₃) δ 7.85-7.83 (m, 1H), 7.40-7.31 (m, 1H), 7.24-7.19 (m, 1H), 7.05-6.97

(m, 2H), 6.17-6.12 (m, 1H), 3.19 (dd, J = 4.8, 9.1 Hz, 1H), 3.04(dd, J = 9.1, 18.8 Hz, 1H), 2.88 (dd, J = 4.7, 18.4 Hz, 1H), 2.39 (s, 3H), 1.58 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 174.1, 173.6, 171.0, 159.4, 139.3, 131.1, 129.8, 129.0, 126.9, 123.4, 120.9, 86.8, 46.9, 30.9, 21.2, 19.2; **HRMS** (ESI) calcd. for C₁₆H₁₅NNaO₄ [M+Na] 308.0893; found: 308.0902

- 1 W. Yang and D.-M. Du, Org. Lett., 2010, 12, 5450.
- 2 A. Tsolomitis and C. Sandris, J. Heterocyclic. Chem., 1983, 20, 1545.

Copies of HPLC spectra

Peak	RT(min.)	Height(mV*sec)	Area(mV)	Area(%)
1	18.870	162153.719	5225613.000	97.6185
2	34.790	1942.891	127482.547	2.3815

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 20 23 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 BTHB (m.n.)

Peak	RT(min.)	Height(mV*sec)	Area(mV)	Area(%)
1	20.390	51037.648	1836498.125	97.1532
2	39.375	733.065	53814.211	2.8468

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 56 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 附词(min)

Peak	RT(min.)	Height(mV*sec)	Area(mV)	Area(%)
1	28.202	24514.580	960622.500	16.2466
2	33.438	42597.605	1975107.625	33.4042
3	36.155	18898.092	964426.375	16.3109
4	48.043	29433.535	2012599.750	34.0383

Peak	RT(min.)	Height(mV*sec)	Area(mV)	Area(%)
1	33.253	164512.313	7615249.000	91.5508
2	47.978	10884.428	702814.000	8.4493

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2013

S38

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2013

S55