## Nickel Catalyzed One Pot Synthesis of Biaryls under Air at Room Temperature

Aparna P. I. Bhat,<sup>*a*</sup> Fawad Inam<sup>*b*</sup> and Badekai Ramachandra Bhat<sup>\**a*</sup>

 <sup>a</sup> Catalysis and Materials Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Srinivasanagar-575025, India.
<sup>b</sup>Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom.

## Supporting data

## Characterization data

All the compounds gave satisfactory spectroscopic values which are given below and are analogue to spectroscopic data reported in the literature. Elemental analyses are given for each compound.

**4,4'-Dimethoxybiphenyl (2a): Yield**: (0.5913 g, 92%) white solid; **mp**: 178-180 °C, Lit.<sup>1</sup> = 179 °C; <sup>1</sup>H NMR  $\delta_{\rm H}$  (500 MHz, CDCl<sub>3</sub>): 3.84 (s, 6H), 6.96 (d, J = 9.0 Hz, 4H), 7.48 (d, J = 8.5 Hz, 4H); <sup>13</sup>C NMR  $\delta_{\rm C}$  (125 MHz, CDCl<sub>3</sub>): 55.5, 114.4, 127.9, 133.6, 158.9; **Elemental analysis** calcd for C<sub>14</sub>H<sub>14</sub>O<sub>2</sub> (%): C, 78.48; H, 6.59; O, 14.93. found: C, 78.23; H, 6.44; O; 14.78.

**2,2'-Dimethoxybiphenyl (2b): Yield**: (0.5078 g, 79%); white solid; **mp:** 154.5-156 °C, Lit.<sup>1</sup> = 156 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ : 3.77 (s, 6H), 6.99 (m, 4H), 7.28 (d, J = 7.0 Hz, 2H), 7.32 (t, J = 7.0 Hz, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$ : 55.8, 111.3, 120.5, 127.9, 128.8, 131.6, 157.2; **Elemental analysis** calcd for C<sub>14</sub>H<sub>14</sub>O<sub>2</sub> (%): C, 78.48; H, 6.59; O, 14.93. found: C, 78.35; H, 6.28; O; 14.84.

**4,4'-Dimethylbiphenyl (2c): Yield**: (0.7834 g, 86%); white solid; **mp**: 124-125 °C, Lit.<sup>2</sup> = 125 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ: 2.38 (s, 6H), 7.24 (d, J = 8.0 Hz, 4H), 7.48 (d, J = 8.0 Hz, 4H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ: 21.3, 127.0, 129.7, 136.8, 138.5; **Elemental analysis** calcd for C<sub>14</sub>H<sub>14</sub> (%): C, 92.26; H, 7.74. found: C, 92.18; H, 7.64.

**2,2'-Dimethylbiphenyl (2d): Yield**: (0.6832 g, 75%); yellow liquid; bp: 259 °C, Lit.<sup>3</sup> = 257 °C; <sup>1</sup>HNMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 2.05 (s, 6H), 7.11 (d, J = 8.8 Hz, 2H), 7.22-7.25 (m, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  = 18.8, 124.5, 126.1, 128.2, 128.7, 134.8, 140.6; **Elemental analysis** calcd for C<sub>14</sub>H<sub>14</sub> (%): C, 92.26; H, 7.74. found: C, 92.29; H, 7.37.

**Biphenyl (2e): Yield**: (0.1.279 g, 83%); white solid; **mp:** 67-69 °C, Lit.<sup>1</sup> = 68 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ : 7.34 (t, J = 7.3 Hz, 2H), 7.44 (t, J = 7.5 Hz, 4H), 7.60 (d, J = 7.5 Hz, 4H); <sup>13</sup>C NMR (125 MHz, CDCl3)  $\delta$ : 127.3, 127.4, 128.7, 141.4; **Elemental analysis** calcd for C<sub>12</sub>H<sub>10</sub> (%): C, 93.46; H, 6.54. found: C, 93.28; H, 6.48.

**4,4'-Dichlorobiphenyl (2f): Yield**: (0.8477 g, 76%); white solid; mp: 150 °C, Lit.<sup>4</sup> = 149 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ : 7.39 (d, J = 7.6 Hz, 4H), 7.46 (d, J = 8 Hz, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ : 127.2, 128.0, 132.7, 137.4; **Elemental analysis** calcd for C<sub>12</sub>H<sub>8</sub>Cl<sub>2</sub> (%): C, 64.60; H, 3.61. found: C, 64.12; H, 3.38.

**2,2'-Dinitrobiphenyl (2g): Yield**: (0.3175 g, 65%); pale brown solid; **mp:** 120-122 °C, Lit.<sup>1</sup> = 120 °C; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$ : 7.31 (d, J = 7.5 Hz, 2H), 7.59 (t, J=7.25 Hz, 2H), 7.68 (t, J = 7 Hz, 2H), 8.23 (d, J = 8 Hz, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$ : 124.8, 129.2, 131.0, 133.6, 134.2, 147.2; **Elemental analysis** calcd for C<sub>12</sub>H<sub>8</sub>N<sub>2</sub>O<sub>4</sub>(%): C, 59.02; H, 3.30; N, 11.47; O, 26.21 found: C, 58.96; H, 3.12; N, 11.34; O, 26.15.

**4,4'-Dicyanobiphenyl (2h): Yield**: (0.2491 g, 61%); white solid; **mp:** 234 °C, Lit.<sup>1</sup> = 233-234 °C; <sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>): 7.68-7.74 (m, 4 H), 7.75-7.82 (m, 4 H); <sup>13</sup>C-NMR (125 MHz, CDCl<sub>3</sub>): 112.4, 118.4, 127.9, 132.8, 143.5; **Elemental Analysis** calcd For C<sub>14</sub>H<sub>8</sub>N<sub>2</sub> (%): C, 82.33; H, 3.95; N, 13.72. found: C, 82.15; H, 4.13; N, 13.45.

**1,1'-Binaphthyl (2i): Yield**: (0.6917 g, 68%); white solid; **mp:** 157 °C, Lit.<sup>5</sup> = 155-156°C; <sup>1</sup>H **NMR** (300 MHz, CDCl<sub>3</sub>)  $\delta$  : 7.26-7.62 (m, 10H), 7.96 (d, J = 8.1, 4H); <sup>13</sup>C **NMR** (75 MHz, CDCl<sub>3</sub>)  $\delta$ : 125.5, 125.9, 126.1, 126.7, 127.9, 128.0, 128.3, 133.0, 133.6, 138.6; **Elemental analysis** calcd for C<sub>20</sub>H<sub>14</sub> (%): C, 94.45; H, 5.55. found: C, 94.18; H, 5.44.

**4,4'-Bipyridine (2j): Yield**: (0.2280 g, 73%); **mp**: 112 °C, Lit.<sup>1</sup> =110 °C; <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$ : 7.55 (dd, J = 4.5 Hz, 4H), 8.75 (dd, J = 4.5 Hz, 4H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$ : 121.4, 145.4, 150.6; **Elemental analysis** calcd for C<sub>10</sub>H<sub>8</sub>N<sub>2</sub> (%): C, 76.90; H, 5.16; N, 17.94 found: C, 76.78; H, 5.10; N, 17.88.

The <sup>1</sup>H NMR, TG analysis of the ligand L and complex NiL are given in S4 – S7. The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of the biaryl compounds are given in the S8 - S19.

## References

- G. Cahiez, A. Moyeux, J. Buendia, C. Duplais, J. Am. Chem. Soc. 129 (2007) 13788-13789.
- 2 X. Xu, D. Cheng, W. Pei, J. Org. Chem. 71 (2006) 6637-6639.
- 3 S. Punna, D.D. Diaz, M.G. Finn, Synlett. 13 (2004) 2351-2354.
- 4 Y. Yamamoto, R. Suzuki, K. Hattori, H. Nishiyama, Synlett. 7 (2006) 1027-1030.
- 5 T. Hayashi, K. Hayashizaki, T. Kiyoi, Y. Ito, J. Am. Chem. Soc. 110 (1988) 8153-8156.































