Supporting information for:

UV light enhanced TiO₂/graphene device for oxygen sensing at room

temperature

Jia Zhang^{a, b}, Chao Zhao^b, Ping An Hu^{a*}, Yong Qing Fu^{b*}, Zhenlong Wang^{a*}, Wenwu Cao^c, Bin Yang^c, Frank Placido^b

^a Key Lab of Microsystem and Microstructure, Harbin Institute of Technology, Ministry of Education, No.

2 YiKuang Street, Harbin, 150080, China

^bThin Film Centre, Scottish Universities Physics Alliance (SUPA), University of the West of Scotland,

Paisley, PA1 2BE, UK)

^cCondensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150080,

China

Fig. S1 Current-voltage (*I-V*) characteristics of the TiO₂/graphene device in high vacuum (a) and in high purity N₂ atmosphere (b) with and without UV light.

Fig. S2 Characteristics of O_2 sensing performance of the pristine graphene and TiO₂ device. Optical image of the pristine graphene (a) and TiO₂ device (b). (c) *I-V* curves of the pristine graphene device in O_2 with and without UV light, inset is enlarged curves. (d) *I-V* curves of the TiO₂ device in O_2 with and without UV light. (e) Response of the pristine graphene device sequent exposure to N_2 and O_2 with UV light, $V_{\text{bias}}=1$ V. (f) Response of the TiO₂ device sequent exposure to N_2 and O_2 with UV light, $V_{\text{bias}}=1$ V.