Bipolar luminescent materials containing pyrimidine terminals: synthesis, photophysical and theoretical study

Jiena Weng, ^a Qunbo Mei, ^{*a} Quli Fan, ^a Qidan Ling, ^a Bihai Tong^c and Wei Huang^{*a,b}

^a Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210046, China. Fax: +86 25 8586 6533; Tel: +86 25 8586 6396
E-mail: iamqbmei@njupt.edu.cn (Q. Mei), iamwhuang@njupt.edu.cn (W.Huang)

^b Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Technology, Nanjing 211816, China. Fax: +86 25 5813 9988; Tel: +86 25 5813 9001.

^c Institute of Molecular Engineering and Applied Chemistry, College of Metallurgy and Resources, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China.

Contents:

1. Supplementary UV - vis and PL spectra data (S1 - S2)
2. Cyclic voltammogram of PM1 – PM5 in DCM solution – – – – – – – – – – (83)
3. The optimized ground-state geometries of PM compounds by DFT/B3LYP/6-31G(d) –
4. The simulated absorption spectra and detailed data by DFT//B3LYP/6-31G(d)
5. Characterization: NMR and MS spectra(S11-S26)

1. Supplementary UV - vis and PL spectra data

Figure S1 Normalized absorption spectra of PM1 (a), PM2 (b), PM3 (c) and PM4 (d) recorded in different solvents.

Figure S2 Normalized photoluminescence spectra ($\lambda_{ex} = 360$ nm) of PM1 (a), PM2 (b), PM3 (c) and PM4 (d) recorded in different solvents.

Table S1	Optical pro	operties of PM1	– PM5 in	solvents	of varying	polarity
----------	-------------	-----------------	-----------------	----------	------------	----------

aalvant	1f ^a		$\lambda_{ m al}$	_{bs, max} (ni	m)		_		λ_{e}	_{m, max} (ni	m)	
Solvent	ДJ	PM1	PM2	PM3	PM4	PM5		PM1	PM2	PM3	PM4	PM5
<i>n</i> -haxane	-0.0014	322	345	366	385	381		378	383	412	414	416
toluene	0.0132	332	351	372	388	385		381	379	446	436	433
ethyl ether	0.1625	328	347	363	382	378		381	382	453	437	435
EA	0.1996	332	349	366	383	379		389	386	470	456.6	454
THF	0.2096	337	353	366	386	383		388	387	475	461	458
DCM	0.2171	337	353	370	389	384		412	397	487	472	464
acetone	0.2841	338	356	361	383	378		412	402	498	482	475
acetonitrile	0.3046	334	348	360	382	377		420	415	513	497	490
DMF	0.2744	336	355	366	387	384		417	412	507	492	486
DMSO	0.2630	344	355	367	389	387		432	424	513	496	489
ehanol	0.2887	345	356	370	390	384		444	436	529	517	510
methanol	0.3086	343	355	370	391	384		453	448	546	530	522

^a the orientation polarizability Δf derived from Eq.1.

$$\Delta f = \frac{\left(\varepsilon - 1\right)}{\left(2\varepsilon + 1\right)} - \frac{\left(n^2 - 1\right)}{\left(2n^2 + 1\right)}$$
(Eq. 1)

2. Cyclic voltammogram of PM1 - PM5 in DCM solution

3. The optimized ground-state geometries of PM compounds by DFT/B3LYP/6-31G(d)

Table S2The optimized geometry of **PM1** in ground state at B3LYP/6-31G(d) level

	Х	У	Z		
С	3.32737300	2.99499500	0.09358500		
С	4.40256200	2.09756900	-0.02057600		
С	4.19335100	0.72505800	-0.14525100		
С	2.87281400	0.26748500	-0.15656300		
С	1.77595700	1.16040700	-0.03822000		
С	2.01360700	2.53329000	0.08533400		
Н	5.42023400	2.47833300	-0.00917300		
Н	5.03432400	0.04284500	-0.22666900		
Н	1.18325300	3.22858800	0.17520800		
С	1.00644200	-1.00031400	-0.22099500		
С	0.08047300	-2.04775900	-0.28407900		
С	-1.27020100	-1.73097200	-0.21408200		
С	-1.72663800	-0.39835100	-0.07970000		
С	-0.78329800	0.63870400	-0.01326800		

С	0.57647200	0.34787800	-0.07995000
Н	0.39490300	-3.08240100	-0.38102700
Н	-1.98409800	-2.54640000	-0.26316800
Н	-1.13880800	1.65766700	0.09135400
N	2.38949500	-1.03541600	-0.28110800
С	3.20777100	-2.23571300	-0.36558600
С	3.58508100	-2.81433800	1.00248000
Н	4.10684400	-1.98728200	-0.93952700
Н	2.65716200	-2.97442800	-0.95735100
Н	4.20046500	-3.71256100	0.87809900
Н	4.15325000	-2.08670400	1.59083300
Н	2.69005400	-3.08599600	1.57144200
Н	3.52512000	4.05858000	0.19061700
С	-3.16835100	-0.06934700	-0.00529600
N	-3.49423600	1.23613400	0.11800000
С	-4.19269500	-1.03125800	-0.05608100
С	-4.78687700	1.54590600	0.18566600
С	-5.50469100	-0.58291200	0.02464800
Н	-3.98910900	-2.09102500	-0.15427000
N	-5.83161900	0.71116700	0.14690100
Н	-5.02093000	2.60498500	0.28464000
Н	-6.33305500	-1.28937400	-0.00994700

Table S3The optimized geometry of **PM2** in ground state at B3LYP/6-31G(d) level

C C C

C C H H C C

С

C C C

X	У	Z
-3.04866000	-0.02137900	-0.07370800
-3.42053400	1.34149800	-0.13856200
-2.48062400	2.36390200	-0.18941000
-1.12753700	2.01103700	-0.18066500
-0.72537900	0.65057400	-0.10687700
-1.68605300	-0.35555700	-0.05217200
-4.47016400	1.61622900	-0.12851100
-2.80126100	3.40047200	-0.22551400
-1.40602000	-1.40130300	0.00897100
1.12753700	2.01103700	-0.18066500
2.48062400	2.36390200	-0.18941000
3.42053400	1.34149700	-0.13856200
3.04866000	-0.02137900	-0.07370800
1.68605300	-0.35555700	-0.05217200
0.72537900	0.65057400	-0.10687700

Н	2.80126100	3.40047200	-0.22551300
Н	4.47016400	1.61622900	-0.12851100
Н	1.40602000	-1.40130300	0.00897100
Ν	0.00000000	2.81997700	-0.23807800
С	0.00000000	4.27612000	-0.25648100
С	0.00000000	4.90168900	1.14228800
Н	-0.87700900	4.60229400	-0.82522200
Н	0.87700900	4.60229400	-0.82522200
Н	0.00000000	5.99495100	1.06822100
Н	-0.88591400	4.59497600	1.70766600
Н	0.88591300	4.59497600	1.70766700
С	-4.05960700	-1.10282300	-0.02110000
Ν	-3.61142800	-2.34754300	0.24895200
С	-5.43149200	-0.89585400	-0.24500900
С	-4.51097100	-3.32770400	0.30095300
С	-6.27211300	-1.99845200	-0.15727700
Н	-5.83752600	0.07812200	-0.49225900
Ν	-5.83320300	-3.23386800	0.11960700
Н	-4.12414200	-4.32199500	0.51909100
Н	-7.34382700	-1.89119300	-0.31943500
С	4.05960700	-1.10282300	-0.02110000
Ν	3.61142800	-2.34754300	0.24895400
С	5.43149100	-0.89585400	-0.24501100
С	4.51097100	-3.32770300	0.30095400
С	6.27211300	-1.99845200	-0.15727800
Н	5.83752600	0.07812200	-0.49226200
Ν	5.83320300	-3.23386800	0.11960700
Н	4.12414200	-4.32199400	0.51909400
Н	7.34382700	-1.89119300	-0.31943700

Table S4The optimized geometry of **PM3** in ground state at B3LYP/6-31G(d) level

	X	У	Z
С	2.71255300	3.46168300	0.93070900
С	2.01435300	2.25551800	0.91390700
С	2.38799600	1.23609700	0.02482100
С	3.47820100	1.44234500	-0.83390700
С	4.18173400	2.64501600	-0.79758500
С	3.80139100	3.66276200	0.07964200
Н	2.41066300	4.24218400	1.62407000
Н	1.17695300	2.09686500	1.58605300
Н	3.76804400	0.65736000	-1.52532100
Н	5.02375800	2.79025200	-1.46916300

Н	4.34756000	4.60147800	0.10046600
Ν	1.67833200	-0.00051500	0.00023700
С	0.26768800	-0.01671800	0.01039500
С	-0.43770300	-1.04507500	0.66332700
С	-0.47320100	0.99663600	-0.62774600
С	-1.82584600	-1.06106700	0.66364300
Н	0.11024600	-1.82572000	1.17974500
С	-1.85983900	0.97890400	-0.60849200
Н	0.04823100	1.79514300	-1.14460500
С	-2.57199800	-0.05292500	0.02899300
Н	-2.32739800	-1.86179800	1.19862300
Н	-2.42122700	1.76234100	-1.10505400
С	2.41678700	-1.21934300	-0.02952500
С	2.05389000	-2.25238100	-0.90762500
С	3.52560800	-1.39530500	0.81217900
С	2.78052300	-3.44152600	-0.92991100
Н	1.20344900	-2.11644600	-1.56830100
С	4.25695200	-2.58108600	0.77042900
Η	3.80836700	-0.59975700	1.49433600
С	3.88723300	-3.61242600	-0.09537200
Н	2.48720800	-4.23209700	-1.61558400
Н	5.11312100	-2.70231600	1.42878000
Н	4.45566200	-4.53772100	-0.12085200
С	-4.04965300	-0.04589400	0.01623000
Ν	-4.65563700	1.07149300	-0.44108500
С	-4.83255800	-1.13314900	0.44219800
С	-5.98703900	1.08586200	-0.45377500
С	-6.21318700	-0.99330300	0.38712900
Н	-4.39205400	-2.05996400	0.79122200
Ν	-6.81957500	0.11624600	-0.05807500
Н	-6.45258300	1.99635200	-0.82842200
Н	-6.86516000	-1.80447600	0.70848000

Table S5The optimized geometry of **PM4** in ground state at B3LYP/6-31G(d) level

	X	У	Z
С	-2.57478200	-1.25253900	0.78024900
С	-1.36967300	-0.56234900	0.77513800
С	-1.22400500	0.61449500	0.01972400
С	-2.32932900	1.08060800	-0.71415300
С	-3.53373000	0.39194700	-0.69077000
С	-3.68397200	-0.79462200	0.04851100

Н	-2.65066300	-2.14506400	1.39355200
Н	-0.53633300	-0.92657400	1.36656400
Н	-2.23453800	1.98456500	-1.30668700
Н	-4.38118500	0.75548700	-1.26079300
Ν	0.00031100	1.32542000	0.01097200
С	1.23944000	0.64181500	0.01791500
С	2.33099900	1.14861000	0.74469500
С	1.41357100	-0.55114500	-0.70697100
С	3.55222100	0.48730800	0.73677100
Н	2.21262500	2.05909900	1.32248600
С	2.63341100	-1.21210900	-0.69688000
Н	0.58728200	-0.95103700	-1.28539100
С	3.73400600	-0.70653800	0.01795300
Н	4.36247200	0.90179900	1.32857700
Н	2.76141100	-2.12941400	-1.26038000
С	-0.01564300	2.75372700	-0.00279600
С	0.78771700	3.46166900	-0.90844300
С	-0.83483100	3.46125800	0.88878800
С	0.77568300	4.85552200	-0.91276500
Н	1.41600400	2.91494500	-1.60472000
С	-0.85400300	4.85486400	0.86556400
Н	-1.45295800	2.91460000	1.59410400
С	-0.04694800	5.55922500	-0.03045000
Н	1.40229300	5.39213100	-1.62008200
Н	-1.49409600	5.39104900	1.56097700
Н	-0.05963500	6.64529200	-0.04165500
С	5.02315200	-1.43185500	-0.00605700
Ν	5.02447900	-2.66062000	-0.56588700
С	6.21863400	-0.90310400	0.50952000
С	6.18024100	-3.32168500	-0.59147200
С	7.35840200	-1.69343600	0.43034900
Н	6.27222300	0.08799800	0.94504800
Ν	7.36393000	-2.91631400	-0.11796200
Н	6.15761200	-4.30924800	-1.04973200
Н	8.31030100	-1.33301800	0.81779500
С	-4.97941300	-1.50922000	0.03841900
Ν	-6.02542400	-0.87355400	-0.53173000
С	-5.15841800	-2.79452200	0.57735600
С	-7.19606700	-1.50813800	-0.54375500
С	-6.43072500	-3.34850500	0.51011600
Н	-4.34327500	-3.35428800	1.02123900
Ν	-7.47412900	-2.71896900	-0.04755800
Н	-8.02434400	-0.97728100	-1.01061600
Н	-6.62498400	-4.34047700	0.91553400

Table S6	The optimized	geometry of PM5 in	ground state at	B3LYP/6-31G(d	l) level
----------	---------------	--------------------	-----------------	---------------	----------

	X	У	Z	
С	0.29948400	3.60716600	0.81211500	
С	0.53903000	2.23885000	0.81168600	
С	-0.24010200	1.37987800	0.01898300	
С	-1.27186900	1.93224300	-0.75891700	
С	-1.51428100	3.29876100	-0.73963500	
С	-0.72996000	4.16883400	0.03793300	
Н	0.91134800	4.23414900	1.45298100	
Н	1.32724700	1.82720200	1.43322900	
Н	-1.87849300	1.28377800	-1.38255600	
Н	-2.31010100	3.72090200	-1.34262700	
Ν	0.00979400	-0.01731500	0.00818900	
С	1.34463700	-0.49855500	0.01577900	
С	1.70140400	-1.60605300	0.80318100	
С	2.33782500	0.12449200	-0.75922100	
С	3.00758900	-2.07908100	0.80248900	
Н	0.95135400	-2.08633600	1.42286600	
С	3.64364500	-0.34551500	-0.74172800	
Н	2.07663800	0.97579600	-1.37939100	
С	4.00758300	-1.46183300	0.03181700	
Н	3.24789700	-2.92298200	1.44176300	
Н	4.40623500	0.13725300	-1.34227700	
С	-1.07329600	-0.93393800	-0.00632000	
С	-1.01745400	-2.09285400	-0.79855500	
С	-2.22416900	-0.70116300	0.76594000	
С	-2.07477500	-2.99371900	-0.80422300	
Н	-0.14552200	-2.27714400	-1.41737300	
С	-3.28231900	-1.59906400	0.74175400	
Н	-2.28135300	0.18592800	1.38821700	
С	-3.22967700	-2.76945400	-0.03566400	
Н	-2.00165900	-3.86564500	-1.44666200	
Н	-4.16775200	-1.41595800	1.33981000	
С	-4.37231100	-3.71099300	-0.02622000	
Ν	-5.50251100	-3.29523100	0.58333400	
С	-4.32473200	-4.99018800	-0.60462600	
С	-6.53706000	-4.13389400	0.59438900	
С	-5.47239700	-5.77052800	-0.53382600	
Н	-3.43168600	-5.37690500	-1.08177300	
Ν	-6.59964200	-5.35987600	0.06262600	

Н	-7.43745100	-3.77824700	1.09272900
Н	-5.49131600	-6.76866200	-0.96901700
С	5.40771500	-1.94270000	0.01622700
Ν	6.32108500	-1.14783500	-0.58017400
С	5.81034800	-3.16647400	0.57600500
С	7.58388000	-1.57099200	-0.59625800
С	7.15887300	-3.49390700	0.50254700
Н	5.10768200	-3.84903300	1.03984800
Ν	8.07143500	-2.70496000	-0.08060700
Н	8.30322400	-0.91524200	-1.08422000
Н	7.52591500	-4.42869700	0.92380000
С	-1.00741500	5.62323800	0.02035900
Ν	-2.13451200	6.02329000	-0.60514400
С	-0.16057100	6.57886300	0.60584700
С	-2.39328700	7.32956800	-0.62578800
С	-0.54278800	7.91235600	0.52362600
Н	0.76688300	6.30730200	1.09652600
Ν	-1.66410700	8.31464100	-0.08962700
Н	-3.30649500	7.62957200	-1.13726800
Н	0.07531200	8.69391400	0.96306300

4. The simulated absorption spectra and detailed data by DFT//B3LYP/6-31G(d)

Molecule	States	Electron transition	Calculated wavelength (nm)	Excitation energy	Main transition configuration	Oscillator strength f	Dipole moment (Debye)
DM1	Gas-phase	S_0-S_1	330.2	3.76	HOMO→LUMO (0.92)	0.2954	5.1315
PMI	•	$S_0 - S_2$	322.1	3.85	HOMO \rightarrow LUMO+1 (0.57)	0.0031	
					HOMO-1 \rightarrow LUMO (0.39)		
	DCM	S_0-S_1	344.5	3.60	HOMO→LUMO (0.96)	0.4228	6.5696
		$S_0 - S_2$	325.9	3.80	HOMO \rightarrow LUMO+1 (0.51)	0.0033	
					HOMO-1 \rightarrow LUMO (0.45)		
DMO	Gas-phase	S_0-S_1	342.5	3.62	HOMO→LUMO (0.96)	0.4677	7.7232
PM2	-	S_0-S_2	327.5	3.79	HOMO \rightarrow LUMO+2 (0.52)	0.0011	
					HOMO-1 \rightarrow LUMO (0.31)		
					HOMO \rightarrow LUMO+1 (0.12)		
	DCM	S_0-S_1	357.3	3.47	HOMO \rightarrow LUMO (0.98)	0.6355	10.1313
		S_0-S_2	331.6	3.74	HOMO \rightarrow LUMO+2 (0.42)	0.0194	
					HOMO \rightarrow LUMO+1 (0.27)		
					HOMO-1 \rightarrow LUMO (0.27)		
DM2	Gas-phase	S_0-S_1	375.3	3.30	HOMO→LUMO (0.99)	0.6056	3.9140
PMJ	•	S_0-S_2	320.6	3.87	HOMO \rightarrow LUMO+1 (0.79)	0.0114	
					HOMO \rightarrow LUMO+2 (0.09)		
					HOMO \rightarrow LUMO+3 (0.08)		
	DCM	S_0-S_1	393.7	3.15	HOMO \rightarrow LUMO (0.99)	0.7083	4.8549
		S_0-S_2	324.4	3.82	HOMO \rightarrow LUMO+1 (0.85)	0.0109	
					HOMO \rightarrow LUMO+2 (0.10)		
DM4	Gas-phase	S_0-S_1	397.2	3.12	HOMO \rightarrow LUMO (0.99)	0.7848	3.7588
P 1 V 14	-	S_0-S_2	356.3	3.48	HOMO→LUMO+1 (0.97)	0.2555	
	DCM	S_0-S_1	415.2	2.99	HOMO→LUMO (0.99)	0.9041	4.7973
		S_0-S_2	367.0	3.38	HOMO \rightarrow LUMO+1 (0.98)	0.3145	
DM5	Gas-phase	S_0-S_1	399.1	3.11	HOMO \rightarrow LUMO (0.99)	0.6520	3.0592
r M3	-	S_0-S_2	395.4	3.14	HOMO→LUMO+1 (0.99)	0.6765	
	DCM	S_0-S_1	411.8	3.01	HOMO→LUMO (0.99)	0.7685	4.2579
		S_0-S_2	410.6	3.02	HOMO→LUMO+1 (0.99)	0.7942	

Table S7The absorption spectra calculated by DFT at B3LYP/6-31G(d) in vacuum and solvent (DCM)
of PM1 – PM5

Figure S4 The simulated absorption spectra of PM compounds in vaccum (a) and DCM (b).

5. Characterization: NMR and MS spectra

439 437 434 434

-2.71 1.45

Figure S7 GC-MS specturm of A1

Figure S8 ¹H NMR of A2 in CDCl₃

Figure S10 GC-MS specturm of A2

Figure S13 GC-MS specturm of A3

Figure S14 ¹H NMR of A4 in CDCl₃

25.0-

0.0

Figure S16 GC-MS specturm of A4

Figure S19 GC-MS specturm of A5

Figure S20 ¹H NMR of PM1 in CDCl₃

Figure S22 GC-MS specturm of PM1

Figure S25 GC-MS specturm of PM2

Figure S26 ¹H NMR of PM3 in CDCl₃

Figure S28 GC-MS specturm of PM3

Figure S31 MALDI-TOF-MS specturm of PM4

Figure S34 MALDI-TOF-MS specturm of PM5