ELECTRONIC SUPPORTING INFORMATION

One-dimensional hierarchical composite materials based on ZnO nanowires and blend nanofibers

Thushara J. Athauda¹, Umaiz Butt², and Ruya R. Ozer¹*

Department of Chemistry and Biochemistry¹, Department of Chemical Engineering², The University of Tulsa, Tulsa, OK, 74104, U.S.A.

*Corresponding Author: <u>ruya-ozer@utulsa.edu</u>

Table of Contents

Size distribution of the ZnO nanocrystals in the seed solution	S1
Image of the electrospun nanofibers after heat treatment	S2
Images of the glass slides containing electrospun nanofibers in ZnO seed solution	S3
Image of the glass slides in growth solution	S4
High resolution SEM images showing the underlying nanofiber formation	S5
Photocatalytic degradation of methylene blue in 30 min in the presence of the composite material	S6
Calibration curve showing the linear relationship between the absorption at 654 nm and the concentration of MB	S7
MB concentration change as a function of time with and without the nanofibers under UV irradiation	S8
Experimental Details	S9

S1.Size distribution of the ZnO nanocrystals in the seed solution

S2. Image of the electrospun nanofibers after heat treatment

S3. Images of the glass slides containing electrospun nanofibers in ZnO seed solution

S4. Image of the glass slides in growth solution

S5. High resolution SEM images showing the underlying nanofiber formation

Fully assembled photoreactor containing 0.10 mM of aqueous methylene blue

UV light is turned on for 30 min

Methylene blue is photocatalytically degraded in 30 min.

S6. Photocatalytic degradation of methylene blue in 30 min in the presence of the composite material

S7. Calibration curve showing the linear relationship between the absorption at 664 nm and the concentration of MB

S8. MB concentration change as a function of time with and without the nanofibers under UV irradiation

S9. Experimental Details

Materials. Cellulose acetate (CeAc, M_w~50,000), polyvinyl acetate(PVAc, M_w~500,000), polyethylene glycol (PEG, M_w~300), N,N-dimethylformamide (DMF, anhydrous, 99.8%), 2,2'azobis(2-methylpropionitrile) (AIBN, 98%), zinc acetate dihydrate (ACS reagent, \geq 98%), %), triethvlamine zinc (≥ 99.5 nitrate hexahydrate (reagent arade 98%). hexamethylenetetramine ($C_6H_{12}N_4$, ACS reagent, $\geq 99.0\%$), methylene blue (dye content, $\geq 8\%$) isopropyl alcohol (C₃H₈O, anhydrous, 99.5%), and ethanol (99%) were purchased from Sigma-Aldrich. Premium microscope glass slides were procured from Fisher Scientific.

Characterization. Morphology of the materials was investigated using a JEOL JSM 6060 LV field emission scanning electron microscope (FESEM). The samples were coated with 5-10 nm Au layer before the SEM imaging. Crystal structures were analyzed using a Shimadzu XRD-6100 X-ray Diffractometer with Cu K α radiation, employing a scanning rate of 0.02° s⁻¹ within the range of 2θ =4°-64°, operating at 40 kV and 33 mA (1320 Watt). Thermogravimetric analysis (TGA) were carried out using a Mettler Toledo 851 with a TSO 801RO robotic arm. The samples were heated from 40 °C to 600 °C at a rate of 10 °C/min under a nitrogen atmosphere at a flow rate of 40 mL/min. UV-Vis transmittance of the samples was studied using a Varian Cary 50 UV-Vis Spectrophotometer in the wavelength range of 280-480 nm and a scan rate of 300 nm/min. Photoluminescence (PL) studies were performed at room temperature using a dual-scanning micro-plate Jasco FP-6500 spectrofluorometer (version 1.08.02) with the Spectra Manager Software using the excitation wavelength at 325 nm. All characterizations and measurements were carried out with the electrospun nanofibers immobilized on glass microscope slides. Image J Program was used to calculate the diameters and length of the fibers and nanowires which were averaged over 20 measurements.