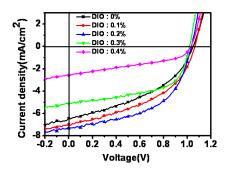
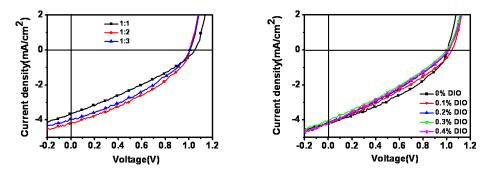

Electronic Supplementary Information for:

A'-A-D-A-A' type small molecule based on 2,7-Carbazole for solution-processed organic solar cells with high open-circuit voltage


Pengcheng Li,^{a,b} Hui Tong,*^a Jian Liu,^{a,b} Junqiao Ding,^a Zhiyuan Xie,^a and Lixiang Wang*^a

^a State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. Fax: 86-431-85684937; Tel: 86-431-85262108; E-mail: <u>chemtonghui@ciac.ac.cn</u> <u>lixiang@ciac.ac.cn</u>


^b University of the Chinese Academy of Sciences, Beijing 100049, P. R. China.

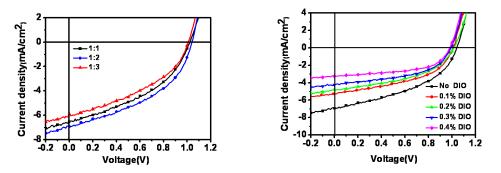

Figure S1. *J-V* curves of the devices prepared from **Cz-TBT-CAC8**/PC₆₁BM with different donor/acceptor weight ratios

Fig. S2. *J-V* curves of the devices prepared from **Cz-TBT-CAC8**/PC₆₁BM (D/A ratio, 1:1) with different content of DIO as additive

Fig. S3. *J-V* curves of the devices prepared from Cz-TBT/PC₆₁BM with different D/A ratio (left) and different content of DIO as additive (right) at the optimized D/A ratio (1:2).

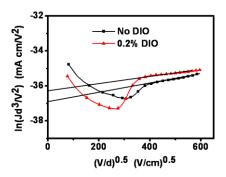


Fig. S4. *J-V* curves of the devices prepared from **Cz-TBT-CAC8**/PC₇₁BM with different D/A ratio (left) and different content of DIO as additive (right) at the optimized D/A ratio (1:2).

D/A ratio	DIO content	$V_{oc}\left(\mathrm{V} ight)$	J_{sc} (mA/cm ²)	FF	PCE
1:1		1.02	6.56	0.42	2.80%
1:2		1.03	6.95	0.42	3.03%
1:3		1.01	5.92	0.41	2.46%
1:2	0.1%	1.01	5.25	0.47	2.50%
1:2	0.2%	1.02	4.78	0.45	2.21%
1:2	0.3%	0.99	4.24	0.50	2.09%
1:2	0.4%	0.98	3.26	0.55	1.77%

Table S1 Device performance for BHJ solar cells based on Cz-TBT-CAC8/PC71BM

The hole mobility of Cz-TBT-CAC8/PC₆₁BM blends processed from CB and CB-0.2% DIO solvent was measured by the space change limited current (SCLC) method with a device structure of ITO/PEDOT:PSS/ Cz-TBT-CAC8:PC₆₁BM (w/w=1:1)/Au.

Fig. S5. Plot of $\ln(Jd^3/V^2)$ versus $(V/d)^{0.5}$ of **Cz-TBT-CAC8**/PC₆₁BM (1:1) blends processed from CB and CB-0.2% DIO solvent for the measurement of hole mobility by the SCLC method