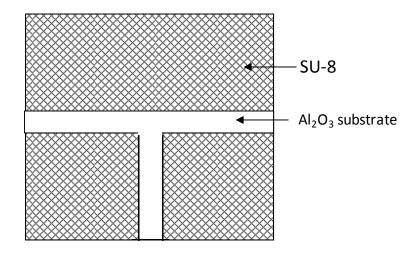
Supporting information for


Fabrication of Boron Doped Diamond Chip Electrodes for Single Drop Analysis

Ai Sugitani,^a Michinobu Katayama,^b Takeshi Watanabe,^a Yoshinori Matsumoto,^b and Yasuaki Einaga^{ac}*

^a Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan

^b Department of Applied Physics and Physico-Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan

^c JST-CREST, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan

Figure S1 Top view of Figure 1(e).

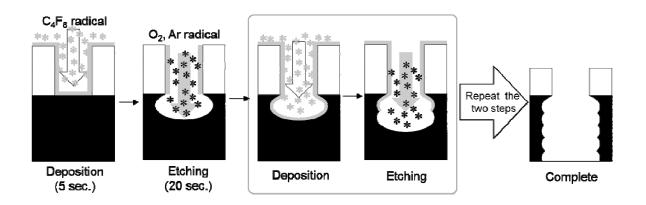


Figure S2. Schematic illustration of the Bosch process.

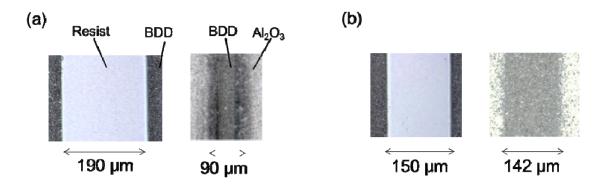
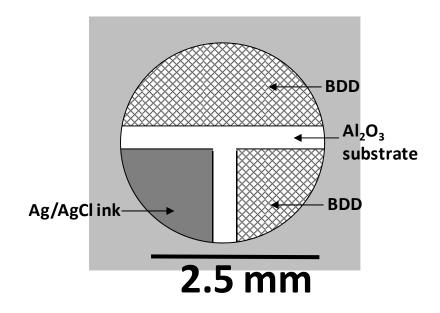



Figure S3. Digital microscope images before and after the ICP-RIE process.

(a) Conventional process: (left) before and (right) after the ICP-RIE process.

(b) Bosch process: (left) before and (right) after the ICP-RIE process.

Figure S4. Schematic illustration of 'BDD chip electrode'. Single drop sample is in the circle area.

Table S1.Process conditions for the Bosch process.

Etching gas	O ₂ : 17 sccm Ar: 32 sccm
Deposition gas	C ₄ F ₈ : 85 sccm
Erching time	20 sec
Passivation time	5sec
Cycle	150 times
Time	62 min
Pressure(etching)	5 Pa
Pressure(passivation)	3.3 Pa
Power	600 W
Substrate bias	25 W
Set	4 (toal 248 min)

10	20	50	100
278	284	291	299
198	202	197	191
238	243	244	245
8.92	12.3	18.0	23.7
-9.13	-12.0	-17.3	-22.3
-0.98	-1.04	-1.05	-1.07
8.68	12.3	19.4	27.4
	278 198 238 8.92 -9.13 -0.98	278 284 198 202 238 243 8.92 12.3 -9.13 -12.0 -0.98 -1.04	278 284 291 198 202 197 238 243 244 8.92 12.3 18.0 -9.13 -12.0 -17.3 -0.98 -1.04 -1.05

Table S2. Electrochemical parameters for the redox behavior $(10 \text{ mM K}_4\text{Fe}(\text{CN})_6 \text{ in 1M}$ KCl solution with the BDD chip electrode) obtained from Figure 3a.