# **Supporting Information**

# A Two-In-One Fluorescent Sensor With Dual Channels to

Discriminate Zn<sup>2+</sup> and Cd<sup>2+</sup>

Li-Kun Zhang,<sup>*a*</sup> Guang-Fu Wu,<sup>*a*</sup> Ying Zhang,<sup>*b*</sup> Yan-Cong Tian,<sup>*c*</sup> Qing-Xiao Tong,\*<sup>*a*</sup> and Dan Li<sup>\**a*</sup>

Contents

**Materials and Instrument** 

**Preparation of 2-MZ** 

**Characterization of 2-MZ** 

Job's plot

Value of Detection Limit

Determination of  $K_d$ 

pH influence

**Excitation spectrum** 

Spectrum changes of 2-MZ-Cd<sup>2+</sup> upon addition of Zn<sup>2+</sup>

**Theoretic Calculations** 

Cell culture and confocal imaging

### **Materials and Instrument**

Unless otherwise noted, materials were obtained from commercial suppliers and were used without further purification. <sup>1</sup>H NMR spectra were recorded on a Bruker Avance 400 spectrometer (400 MHz) using TMS as internal standard. Mass spectra (MALDI-TOF) were obtained Autotlex III spectrometers. Steady-state emission spectra were recorded at ambient temperature on a Hitachi F-7000 Spectrophotometer and UV/Vis spectra were recorded on a Perkin-Elmer Lambda 950 UV-visible spectrophotometer.

#### **Preparation of 2-MZ**



Scheme S1 Synthesis route of 2-MZ

9, 10-phenanthrenequinone (0.21 g, 1 mmol), ammonium acetate (0.75 g, 10 mmol) were added to the solution of ethanol and dichloromethane (1:1, v/v). After refluxing for 10 min, 8-pyridymethyloxy-quinoine-2-carbaldeyde<sup>1</sup> (0.32 g, 1.2 mmol) and a catalyst amount of glacial acetic acid were added. The reaction mixture was held at reflux for another 3 h. After cooling to room temperature, the mixture was filtered. The solid was purified by column chromatography on silica gel to obtain 2-MZ as a yellow solid in 32% yield. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, TMS)  $\delta_{\rm H}$ [ppm]: 13.99 (s, 1H), 8.97 (d, *J* = 7.8 Hz, 1H), 8.89 (dd, *J* = 12.0, 8.5 Hz, 2H), 8.67 (d, *J* = 7.9 Hz, 1H), 8.62 (dd, *J* = 7.4, 4.8 Hz, 2H), 8.54 (d, *J* = 8.7 Hz, 1H), 7.89-7.83 (m, 1H), 7.83-7.73 (m, 3H), 7.68 (dd, *J* = 12.3, 6.9 Hz, 2H), 7.64-7.60 (m, 1H), 7.52 (t, *J* = 7.9 Hz, 1H), 7.39-7.35 (m, 1H), 7.32 (d, *J* = 6.9 Hz, 1H), 5.64 (s, 2H). HRMS(ESI<sup>+</sup>): calcd.for C<sub>30</sub>H<sub>20</sub>N<sub>4</sub>O, [M+H]<sup>+</sup> 453.1710, found 453.1673. [M+Na]<sup>+</sup> 475.1529, found 475.1500.

#### Reference

1. L. Xue, H. H. Wang, X. J. Wang and H. Jiang, Inorg. Chem., 2008, 47, 4310.



# Job's plot



Fig S3 Job's plot for determining the stoichiometric ratio between 2-MZ and  $Zn^{2+}(a)$  or 2-MZ and  $Cd^{2+}(b)$ , where the variations of fluorescence intensity as a function of molar ratio  $X_M$ . The sum of 2-MZ and  $Zn^{2+}$  or  $Cd^{2+}$  concentrations is 10  $\mu$ M

# Value of Detection Limit





Fig S4 Fitting of fluorescence titration curve of 2-MZ and  $Zn^{2+}(a)$  or 2-MZ and  $Cd^{2+}(b)$ .

## Determination of $K_d$

The apparent dissociation constants ( $K_d$ ) of 2-MZ with  $Zn^{2+}$  and  $Cd^{2+}$  were determined using the nonlinear least-squares analysis based on a 1:1 complex expression:

$$F = F_0 + \frac{F_{\text{max}} - F_0}{2} \left\{ 1 + \frac{C_M}{C_L} + \frac{1}{K_S C_L} - \left[ \left( 1 + \frac{C_M}{C_L} + \frac{1}{K_S C_L} \right)^2 - 4 \frac{C_M}{C_L} \right]^{\frac{1}{2}} \right\}$$

Where F and F<sub>0</sub> are the fluorescence intensities of 2-MZ in the presence and absence of  $Zn^{2+}$  or  $Cd^{2+}$ ,  $C_M$  and  $C_L$  are the concentrations of  $Zn^{2+}$  or  $Cd^{2+}$  and 2-MZ, and  $K_s$  is the stability constant.





Fig. S5 (a) A nonlinear fitting curve of the fluorescence intensity of 2-MZ versus [Zn<sup>2+</sup>]/[2-MZ] at 525 nm. (b) A nonlinear fitting curve of the fluorescence intensity of 2-MZ versus [Cd<sup>2+</sup>]/[2-MZ] at 490 nm.

# pH influence



Fig. S6 Emission ratio  $(I_{530}/I_{450})$  of 2-MZ vs. pH values in the absence (black line) and in the presence (red line) of  $Zn^{2+}$ . Excitation at 375 nm.



Fig. S7 Emission ratio  $(I_{490}/I_{430})$  of 2-MZ vs. pH values in the absence (black line) and in the presence (red line) of  $Cd^{2+}$ . Excitation at 375 nm.

# **Excitation spectrum**



Fig. S8 (a) Excitation spectral changes of 2-MZ (10  $\mu$ M) in aqueous solution (10 mM HEPES; DMF/H<sub>2</sub>O =

1:1, v/v; pH 7.2) upon addition of  $Zn^{2+}$  and  $Cd^{2+}$ .



Spectrum changes of 2-MZ-Cd<sup>2+</sup> upon addition of Zn<sup>2+</sup>

Fig. S9 Fluorescence changes of 2-MZ (10 µM) and Cd<sup>2+</sup> (60 µM) in aqueous solution (10 mM HEPES;

DMF/H<sub>2</sub>O = 1:1, v/v; pH 7.2) upon addition of  $Zn^{2+}$  (0 to 50  $\mu$ M).

## **Theoretic Calculations**

All of the ab initio calculations were carried out using Gaussian 09 program package. The geometry optimizations were performed in the solvent at B3LYP/6-311+G(d), LANL2DZ level. The solvent effect of water was evaluated by using the SMD implicit solvent model.



Fig. S10 B3LYP optimized geometries of 2-MZ and its complexes with  $Zn^{2+}$  and  $Cd^{2+}$ . Grey = C; Red = O; Blue = N; Slate Gray = Zn, Light Yellow = Cd.

Table S1 Selected Bond Distances (Å) for the complexes Zn(2-MZ)(NO<sub>3</sub>)<sub>2</sub> and Cd(2-MZ-H)NO<sub>3</sub>

| Compound                            | $Zn(2-MZ)(NO_3)_2$ | Cd(2-MZ-H)NO <sub>3</sub> |
|-------------------------------------|--------------------|---------------------------|
| M-N1                                | 2.29               | 2.43                      |
| M-N2                                | 2.28               | 2.42                      |
| M-N3                                | 3.26               | 2.33                      |
| M-O                                 | 2.28               | 2.60                      |
| M represents the metal ion Zn or Cd |                    |                           |

## Cell culture and confocal imaging

HepG2 cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10 % fetal bovine serum, penicillin (100 units/mL), streptomycin (100 mg/mL) and 5% CO<sub>2</sub> at 37 °C. The cells were cultured 3 days before dye loading onto 35-mm-diameter glass-bottomed coverslips. Then the cells were washed with PBS, bathed in serum-free DMEM containing 10  $\mu$ M 2-MZ (1% DMSO) for 30 min at 37 °C, washed with PBS three times to remove the excess cell, and bathed in DMEM (2 mL) before imaging. For imaging of Zn<sup>2+</sup>, the exogenous Zn<sup>2+</sup> was introduced by incubating the cells with 50  $\mu$ M ZnCl<sub>2</sub> solution for 20 min. Confocal fluorescence imaging was performed on a Zeiss LSM 510 Meta microscopy system with a 40 × oil immersion objective lens. Fluorescence at two emission channels of 420-480 nm and 505-530 nm was measured at room temperature by excitation at 405 nm.