Electronic Supporting Information

Copper oxide nanoparticle mediated 'click chemistry' for the synthesis of mono-, bis- and tris-triazole derivatives using 10,10dipropargyl-9-anthrone as a key building block

Prasanta Ray Bagdi,^a R. Sidick Basha,^a Pranjal Kumar Baruah^c and Abu T. Khan*^{a,b}

^aDepartment of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781 039, India
^bVice-Chancellor, Aliah University, DN 18, 8th Floor, Sector V, Kolkata-700 091, India
^cDepartment of Chemical Science, Gauhati university, Guwahati 781 014, India
Tel.: +91 361 2582305; fax: +91 361 2582349
E-mail: atk@iitg.ernet.in (A.T. Khan)

Title page	1
Experimental section	2
Reuse of CuO-Nanoparticle for the Synthesis of 9b	3
ORTEP diagram and Crystal Data for compound 8b & 9b	4-6
¹ H NMR and ¹³ C NMR spectra data of Compounds	
Copies of ¹ H NMR, and ¹³ C NMR spectra of Compounds	16-79

I. General Information and Methods.

IR spectra were recorded on IR spectrophotometer. ¹H and ¹³C NMR spectra were recorded on 400 MHz spectrometer TMS as internal reference; chemical shifts (δ scale) are reported in parts per million (ppm). ¹H NMR Spectra are reported in the order: multiplicity, coupling constant (J value) in hertz (Hz) and no of protons; signals were characterized as s (singlet), d (doublet), t (triplet), q (quatret), m (multiplet) and bs (broad). Elemental analyses were carried out using CHNS/O analyzer. The X-ray crystal structures were determined with a diffractometer. Complete crystallographic data of **8b** (CCDC no. 942856) and **9b** (CCDC no. 921613) for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK, (fax: +44-1223-336033, e-mail: deposit@ccdc.cam.ac.uk or via: www.ccdc.cam.ac.uk). The copper oxide nanoparticle were purchased from Sigma-Aldrich.

Fig. 1 Recyclability of copper oxide nanoparticle of 9b

Entry	mmol scale	Amount of catalyst	Recovered catalyst	Time (h)	Yield (%)
01	04	32	28	1.5	85
02	3.5	28	24	2	75
03	3	24	20	2.5	62
04	2.5	20	15	3	55

Recyclability of the catalyst^a in **9b**

^aThe copper oxide nanoparticle was reused as follows: it was filtered off, washed with dichloromethane and finally dried before use for next cycle.

Fig. 2 30% probability of ORTEP ellipsoids of 8b

Fig. 3 30% probability of ORTEP ellipsoids of 9b

Table 6 Crystal Data and Structure Refinement for Compound 8b and 9b

Entry	Identification code	Compound 8b	Compound 9b
01	Empirical formula	C27 H20 N4 O2	C34 H27.05 N8 O5.53
02	Formula weight	432.47	<mark>636.09</mark>
03	Temperature	296(2) K	296(2) K
04	Wavelength	0.71073	0.71073
05	Radiation type	Mo K\a	Mo K\a
06	Radiation source	'fine-focus sealed tube'	fine-focus sealed tube
07	Crystal system	monoclinic	monoclinic
08	Space group	P 21/n	P 21/c
09	Cell length	a 12.4688(7) b 10.2492(6) c 16.9379(9)	a 17.5453(9) b 9.9306(6) c 18.5780(10)
10	Cell Angle	α 90.0 β 97.094(5)	α 90.0 β 108.562(2)
		δ 90.0	δ 90.0
11	Cell Volume	2148.0 (2)	3068.6(3)
12	Density	1.337	1.395
13	Completeness to theta	25.00° / 99.8%	25.25° / 96.9%
14	Absorption correction	multi-scan	multi-scan
15	Refinement method	Full-matrix least-squares on F2	Full-matrix least-squares on F2
16	Index ranges	-14<=h<=14, -12<=k<=6, - 12<=l<=20	-20<=h<=19, -11<=k<=11, - 22<=l<=22
17	Reflection number	3780	5375
18	Theta range	2.94-25.00	1.22-25.25
19	Cell formula units Z	4	4
20	CCDC no	<mark>942856</mark>	<mark>921613</mark>

6

10,10-dipropargyl-9-anthrone (2): Yield = 0.256 g, 95%, white solid, mp 210-211°C, ¹H NMR (400 MHz, CDCl₃): δ 8.42-8.39 (m, 2H), 7.73-7.67 (m, 4H), 7.54-7.48 (m, 2H), 3.09 (d, *J* = 2.4 Hz, 4H), 1.66 (t, *J* = 2.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 183.8, 144.6, 133.7, 132.6, 127.8, 127.7, 126.0, 79.5, 71.7, 45.2, 33.5; IR (KBr)v_{max} 3286, 3255, 3073, 2914, 2116, 1649, 1600, 1585, 1459, 1440, 1324, 1178 cm⁻¹; Anal. calcd for C₂₀H₁₄O: C, 88.86; H, 5.22. found C, 88.75; H, 5.15.

9-allenyl-10-prop-2-ynyl-anthracene (4): Yield = 0.227 g, 90%, yellow solid, mp 168-169 °C, ¹H NMR (400 MHz, CDCl₃): δ 8.45 (d, *J* = 8.8 Hz, 2H), 8.33 (d, *J* = 8.8 Hz, 2H), 7.59-7.50 (m, 4H), 6.95 (t, *J* = 7.2 Hz, 1H), 5.05 (d, *J* = 7.2 Hz, 2H), 4.44 (d, *J* = 2.4 Hz, 2H), 2.07 (t, *J* = 2.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 211.2, 129.7, 129.6, 128.2, 127.8, 126.8, 126.2, 125.4, 124.6, 88.1, 82.4, 75.6, 69.8, 17.9; IR (KBr)v_{max} 3284, 3043, 2972, 2109, 1945, 1622, 1442, 1374, 1314, 1180 cm⁻¹; Anal. calcd for C₂₀H₁₄: C, 94.45; H, 5.55. found C, 94.34; H, 5.49.

10,10-diprop-2-ynyl-9-(prop-2-yn-1-oxy)-9,10-dihydroanthracene (5): Yield = 0.263 g, 85%, pale yellow solid, mp 96-97 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, *J* = 8.0 Hz, 2H), 7.53 (d, *J* = 7.2 Hz, 2H), 7.39 (t, *J* = 7.2 Hz, 2H), 7.33 (t, *J* = 7.2 Hz, 2H), 5.61 (s, 1H), 4.03 (d, *J* = 2.4 Hz, 2H), 3.34 (t, *J* = 2.8 Hz, 2H), 2.85 (d, *J* = 2.4 Hz, 2H), 2.49 (t, *J* = 2.4 Hz, 1H), 1.92 (t, *J* = 2.4 Hz, 1H), 1.59 (t, *J* = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 141.3, 134.8, 130.0, 128.6, 127.2, 126.7, 126.0, 81.3, 81.0, 80.0, 75.7, 75.1, 71.9, 70.7, 54.3, 46.1, 35.9, 26.6; IR (KBr)v_{max} 3286, 3066, 3028, 2923, 2853, 2116, 1649, 1599, 1484, 1446, 1323 cm⁻¹; Anal.calcd for C₂₃H₁₈O: C, 89.00; H, 5.85. found C, 88.88; H, 5.78.

1-benzyl-4-((9-(propa-1,2-dienyl)anthracen-10-yl)methyl)-1H-1,2,3-triazole (8a): Yield = 0.348 g, 90%, yellow solid, mp 177-178 °C, ¹H NMR (400 MHz, CDCl₃): δ 8.38 (d, *J* = 9.6 Hz, 2H), 8.21 (d, *J* = 9.2 Hz, 2H), 7.44-7.41 (m, 4H), 7.18-7.16 (m, 3H), 7.01 (brs, 2H), 6.88 (t, *J* = 7.6 Hz, 1H), 6.66 (s, 1H), 5.22 (s, 2H), 4.99 (s, 2H), 4.98 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 211.2, 134.9, 130.6, 129.9, 129.7, 129.1, 128.6, 127.9, 127.5, 126.7, 126.1, 125.9, 125.0, 121.9, 88.1, 75.7, 54.1, 25.3; IR (KBr)v_{max} 3120, 3064, 2953, 1946, 1662, 1550, 1444, 1318, 1215 cm⁻¹; Anal. calcd for C₂₇H₂₁N₃: C, 83.69; H, 5.46; N, 10.84. found C, 83.56; H, 5.39; N, 10.78.

1-(4-nitrobenzyl)-4-((9-(propa-1,2-dienyl)anthracen-10-yl)methyl)-1H-1,2,3-triazole (8b): Yield = 0.376 g, 87%, yellow solid, mp 153-154°C, ¹H NMR (400 MHz, CDCl₃): δ 8.44 (d, *J* = 8.8 Hz, 2H), 8.25 (d, *J* = 8.8 Hz, 2H), 8.06 (d, *J* = 8.4 Hz, 2H), 7.50-7.48 (m, 4H), 7.18 (d, *J* = 8.4 Hz, 2H), 6.93 (t, *J* = 7.6 Hz, 1H), 6.74 (s, 1H), 5.35 (s, 2H), 5.06 (s, 2H), 5.03 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 211.1,

148.5, 147.8, 141.7, 130.2, 129.7, 129.5, 128.3, 127.4, 126.6, 126.1, 125.4, 124.7, 124.0, 122.1, 87.9, 75.6, 52.8, 25.0; IR (KBr) v_{max} 3135, 3075, 3051, 2963, 1946, 1605, 1520, 1443, 1344, 1261, 1209 cm⁻¹; Anal. calcd for $C_{27}H_{20}N_4O_2$: C, 74.98; H, 4.66; N, 12.95. found C, 74.89; H, 4.59; N, 12.85.

1-(4-methoxybenzyl)-4-((9-(propa-1,2-dienyl)anthracen-10-yl)methyl)-1H-1,2,3-triazole (8c): Yield = 0.354 g, 85%, yellow solid, mp 161-162°C, ¹H NMR (400 MHz, CDCl₃): δ 8.45-8.42 (m, 2H), 8.28-8.26 (m, 2H), 7.51-7.45 (m, 4H), 7.02 (d, *J* = 8.4 Hz, 2H), 6.94 (t, *J* = 7.6 Hz, 1H), 6.74 (d, *J* = 7.6 Hz, 2H), 6.68 (s, 1H), 5.21 (s, 2H), 5.05 (s, 2H), 5.04 (d, *J* = 7.6 Hz, 2H), 3.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 211.1, 159.7, 147.9, 130.6, 129.8, 129.5, 129.3, 126.7, 126.5, 125.9, 125.3, 124.9, 121.5, 114.3, 87.9, 75.6, 55.2, 53.5, 25.2; IR (KBr)v_{max} 3127, 3068, 2962, 2932, 2836, 1946, 1611, 1513, 1441, 1302, 1249, 1209 cm⁻¹; Anal. calcd for C₂₈H₂₃N₃O: C, 80.55; H, 5.55; N, 10.06. found C, 80.46; H, 5.46; N, 9.98.

4-((9-(propa-1,2-dienyl)anthracen-10-yl)methyl)-1-propyl-1H-1,2,3-triazole (8d): Yield = 0.258 g, 76%, yellow solid, mp: 117-118°C, ¹H NMR (400 MHz, CDCl₃): δ 8.46-8.44 (m, 2H), 8.29-8.27 (m, 2H), 7.52-7.47 (m, 4H), 6.95 (t, *J* = 7.2 Hz, 1H), 6.68 (s, 1H), 5.06-5.04 (m, 4H), 4.04 (t, *J* = 7.6 Hz, 2H), 1.74-1.68 (m, 2H), 0.78 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 211.2, 147.7, 130.8, 129.9, 129.7, 127.4, 126.7, 126.1, 125.4, 125.0, 121.8, 88.1, 75.7, 51.9, 25.3, 23.7, 11.1; IR (KBr)v_{max} 3119, 3068, 2966, 2931, 2875, 1950, 1620, 1550, 1443, 1383, 1262, 1218 cm⁻¹; Anal. calcd for C₂₃H₂₁N₃: C, 81.38; H, 6.24; N, 12.38. found C, 81.29; H, 6.15; N, 12.29.

1-butyl-4-((10-(propa-1,2-dien-1-yl)anthracen-9-yl)methyl)-1H-1,2,3-triazole (8e): Yield = 0.268 g, 76%, yellow solid, mp 120-121 °C, ¹H NMR (400 MHz, CDCl₃): δ 8.47-8.44 (m, 2H), 8.31-8.28 (m, 2H), 7.52-7.48 (m, 4H), 6.66 (t, *J* = 7.2 Hz, 1H), 6.68 (s, 1H), 5.06-5.05 (m, 4H), 4.08 (t, *J* = 7.2 Hz, 2H), 1.69-1.64 (m, 2H), 1.23-1.14 (m, 2H), 0.81 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 211.2, 147.6, 130.7, 129.9, 129.6, 127.4, 126.6, 126.1, 125.4, 124.9, 121.7, 88.1, 75.6, 50.1, 32.2, 25.3, 19.8, 13.5; IR (KBr)v_{max} 3120, 3070, 2962, 2929, 2871, 1951, 1599, 1460, 1385, 1261, 1217 cm⁻¹; Anal. calcd for C₂₄H₂₃N₃: C, 81.55; H, 6.56; N, 11.89. found C, 81.44; H, 6.45; N, 11.79.

1-(sec-butyl)-4-((10-(propa-1,2-dien-1-yl)anthracen-9-yl)methyl)-1H-1,2,3-triazole (8f): Yield = 0.282 g, 80%, yellow solid, mp 129-130 °C, ¹H NMR (400 MHz, CDCl₃): δ 8.46-8.44 (m, 2H), 8.30-8.28 (m, 2H), 7.51-7.48 (m, 4H), 6.96 (t, *J* = 6.8 Hz, 1H), 6.68 (s, 1H), 5.08-5.05 (m, 4H), 4.33 (q, *J* = 7.2 Hz, 1H), 1.73-1.62 (m, 2H), 1.32 (d, *J* = 6.8 Hz, 3H), 0.68 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ

211.2, 147.4, 130.9, 130.1, 129.7, 127.3, 126.6, 126.1, 125.4, 125.1, 119.7, 88.2, 75.7, 58.9, 30.3, 25.5, 20.8, 10.5; IR (KBr)v_{max} 3123, 3066, 2964, 2933, 2876, 1949, 1619, 1547, 1443, 1384, 1368, 1260, 1225 cm⁻¹; Anal. calcd for C₂₄H₂₃N₃: C, 81.55; H, 6.56; N, 11.89. found C, 81.45; H, 6.46; N, 11.80.

1-hexyl-4-((10-(propa-1,2-dien-1-yl)anthracen-9-yl)methyl)-1H-1,2,3-triazole (8g): Yield = 0.289 g, 76%, yellow solid, mp 141-142 °C, ¹H NMR (400 MHz, CDCl₃): δ 8.47-8.44 (m, 2H), 8.29-8.27 (m, 2H), 7.52-7.47 (m, 4H), 6.96 (t, *J* = 7.2 Hz, 1H), 6.67 (s, 1H), 5.06-5.04 (m, 4H), 4.07 (t, *J* = 7.2 Hz, 2H), 1.68-1.65 (m, 2H), 1.15-1.12 (m, 6H), 0.77 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 211.2, 147.7, 130.8, 129.9, 129.7, 127.4, 126.7, 126.1, 125.4, 125.0, 121.8, 88.1, 75.6, 50.3, 31.1, 30.2, 26.2, 25.3, 22.4, 13.9; IR (KBr)v_{max} 3121, 3073, 2953, 2929, 2856, 1945, 1619, 1554, 1443, 1314, 1219 cm⁻¹; Anal. calcd for C₂₆H₂₇N₃: C, 81.85; H, 7.13; N, 11.01. found C, 81.74; H, 7.05; N, 10.94.

1-allyl-4-((10-(propa-1,2-dien-1-yl)anthracen-9-yl)methyl)-1H-1,2,3-triazole (8h): Yield = 0.276 g, 82%, yellow solid, mp 164-165 °C, ¹H NMR (400 MHz, CDCl₃): δ 8.46-8.44 (m, 2H), 8.30-8.27 (m, 2H), 7.51-7.44 (m, 4H), 6.95 (t, *J* = 7.2 Hz, 1H), 6.71 (s, 1H), 5.83-5.74 (m, 1H), 5.14 (d, *J* = 10.4 Hz, 2H), 5.06-5.02 (m, 4H), 4.72 (d, *J* = 6.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 211.2, 148.0, 131.3, 130.7, 129.9, 129.6, 127.4, 126.7, 126.1, 125.4, 124.9, 121.7, 120.1, 88.1, 75.6, 52.8, 25.3; IR (KBr)v_{max} 3122, 3069, 2926, 2853, 1952, 1618, 1443, 1383, 1220, 1137 cm⁻¹; Anal. calcd for C₂₃H₁₉N₃: C, 81.87; H, 5.68; N, 12.45. found C, 81.76; H, 5.60; N, 12.36. Chemical Formula: C23H19N3

Ethyl 2-(4-((10-(propa-1,2-dien-1-yl)anthracen-9-yl)methyl)-1H-1,2,3-triazol-1-yl)acetate (8i): Yield = 0.299 g, 78%, yellow solid, mp 159-160 °C, ¹H NMR (400 MHz, CDCl₃): δ 8.45-8.43 (m, 2H), 8.31-8.28 (m, 2H), 7.52-7.47 (m, 4H), 6.95 (t, *J* = 7.2 Hz, 1H), 6.85 (s, 1H), 5.09 (s, 2H), 5.05 (d, *J* = 6.8 Hz, 2H), 4.88 (s, 2H), 4.11 (q, *J* = 8.0 Hz, 2H), 1.14 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 211.2, 166.2, 148.1, 130.5, 129.9, 129.6, 127.4, 126.7, 126.1, 125.4, 124.9, 123.3, 88.1, 75.6, 62.3, 50.8, 25.1, 14.0; IR (KBr)v_{max} 3132, 3080, 2990, 2961, 1938, 1756, 1620, 1546, 1445, 1375, 1217 cm⁻¹; Anal. calcd for C₂₄H₂₁N₃O₂: C, 75.18; H, 5.52; N, 10.96. found C, 75.05; H, 5.44; N, 10.87.

1-phenyl-2-(4-((10-(propa-1,2-dien-1-yl)anthracen-9-yl)methyl)-1H-1,2,3-triazol-1-yl)ethanone (8j): Yield = 0.324 g, 78%, yellow solid, mp 181-182 °C, ¹H NMR (400 MHz, CDCl₃): δ 8.38 (d, J = 8.8 Hz, 2H), 8.28 (d, J = 8.4 Hz, 2H), 7.76 (d, J = 8.0 Hz, 2H), 7.52 (t, J = 7.6 Hz, 2H), 7.48-7.40 (m, 3H), 7.37 (t, J = 7.2 Hz, 2H), 6.89-6.85 (m, 2H), 5.49 (s, 2H), 5.04 (s, 2H), 4.98 (d, J = 6.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 211.2, 190.4, 134.5, 133.9, 130.6, 129.9, 129.6, 129.2, 128.1, 127.4, 126.6, 126.2, 125.4, 124.9, 123.8, 88.1, 75.6, 55.4, 25.2; IR (KBr)v_{max} 3134, 3067, 2963, 2923, 2853, 1948, 1705, 1597, 1448, 1412, 1349, 1261, 1226 cm⁻¹; Anal. calcd for C₂₈H₂₁N₃O: C, 80.94; H, 5.09; N, 10.11. found C, 80.82; H, 4.98; N, 10.04.

10,10-bis((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)anthracen-9(10H)-one (9a): Yield = 0.472 g, 88%, white solid, mp 195-196 °C, ¹H NMR (400 MHz, CDCl₃): δ 8.05 (d, *J* = 7.6 Hz, 2H), 7.88 (d, *J* = 8.0 Hz, 2H), 7.65 (d, *J* = 8.0 Hz, 2H), 7.34-7.25 (m, 8H), 6.76 (d, *J* = 6.0 Hz, 4H), 5.79 (s, 2H), 5.12 (s, 4H), 3.84 (s, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 182.6, 144.9, 143.2, 134.5, 133.9, 132.3, 129.0, 128.5, 127.4, 127.3, 127.2, 121.5, 53.6, 47.1, 40.8; IR (KBr)v_{max} 3164, 3133, 3062, 3032, 2961, 1664, 1602, 1545, 1496, 1455, 1323, 1216 cm⁻¹; Anal. calcd for C₃₄H₂₈N₆O: C, 76.10; H, 5.26; N, 15.66. found C, 75.98; H, 5.18; N, 15.56.

10,10-bis((1-(4-nitrobenzyl)-1H-1,2,3-triazol-4-yl)methyl)anthracen-9(10H)-one (9b): Yield = 0.533 g, 85%, white solid, mp 181-182 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, *J* = 8.8 Hz, 4H), 7.90 (d, *J* = 8.0 Hz, 2H), 7.84 (d, *J* = 8.0 Hz, 2H), 7.62-7.58 (m, 2H), 7.26-7.22 (m, 2H), 6.71 (d, *J* = 8.8 Hz, 4H), 5.84 (s, 2H), 5.13 (s, 4H), 3.77 (s, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 181.3, 146.3, 144.1, 142.2, 141.7, 132.9, 130.9, 126.7, 126.2, 125.5, 122.7, 121.3, 50.9, 46.1, 39.4; IR (KBr)v_{max} 3136, 3070, 2956, 2931, 2857, 1661, 1601, 1523, 1493, 1455, 1419, 1357, 1324, 1216 cm⁻¹.

10,10-bis((1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methyl)anthracen-9(10H)-one (9c): Yield = 0.489 g, 82%, white solid, mp 167-168 °C, ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, *J* = 7.6 Hz, 2H), 7.84 (d, *J* = 8.0 Hz, 2H), 7.61 (t, *J* = 8.0 Hz, 2H), 7.29 (t, *J* = 7.6 Hz, 2H), 6.77-6.69 (m, 8H), 5.70 (s, 2H), 5.01 (s, 4H), 3.80 (s, 6H), 3.78 (s, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 182.6, 159.8, 145.0, 143.1, 133.9, 132.4, 129.0, 127.4, 127.3, 126.6, 121.3, 114.4, 55.5, 53.3, 47.1, 40.9; IR (KBr)v_{max} 3129, 3066, 2960, 2933, 2833, 1663, 1602, 1515, 1324, 1255, 1217 cm⁻¹; Anal. calcd for C₃₆H₃₂N₆O₃: C, 72.47; H, 5.41; N, 14.08. found C, 72.35; H, 5.30; N, 13.98.

10,10-bis((1-(4-methylbenzyl)-1H-1,2,3-triazol-4-yl)methyl)anthracen-9(10H)-one (9d): Yield = 0.485 g, 88%, white solid, mp 215-216 °C, ¹H NMR (400 MHz, CDCl₃): δ 8.06 (d, *J* = 8.0 Hz, 2H), 7.87 (d, *J* = 8.0 Hz, 2H), 7.64 (t, *J* = 7.6 Hz, 2H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.07 (d, *J* = 7.6 Hz, 4H), 6.68 (d, *J* = 7.6 Hz, 4H), 5.78 (s, 2H), 5.07 (s, 4H), 3.83 (s, 4H), 2.35 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 182.6, 144.9, 143.1, 138.3, 133.9, 132.2, 131.5, 129.6, 127.4, 127.2, 121.4, 53.4, 47.0, 40.8, 21.2; IR (KBr)v_{max} 3132,

3062, 3025, 2959, 2922, 1666, 1602, 1516, 1458, 1323, 1217 cm⁻¹; Anal. calcd for C₃₆H₃₂N₆O: C, 76.57; H, 5.71; N, 14.88. found C, 76.45; H, 5.60; N, 14.77.

10,10-bis((1-(4-bromobenzyl)-1H-1,2,3-triazol-4-yl)methyl)anthracen-9(10H)-one (9e): Yield = 0.588 g, 85%, white solid, mp 205-206 °C, ¹H NMR (400 MHz, CDCl₃): δ 8.05 (d, *J* = 8.0 Hz, 2H), 7.92 (d, *J* = 8.0 Hz, 2H), 7.67 (t, *J* = 7.2 Hz, 2H), 7.41 (d, *J* = 8.4 Hz, 4H), 7.34 (t, *J* = 7.6 Hz, 2H), 6.63 (d, *J* = 8.4 Hz, 4H), 5.78 (s, 2H), 5.07 (s, 4H), 3.87 (s, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 182.6, 144.8, 134.1, 133.5, 132.2, 129.7, 128.9, 127.5, 127.3, 127.2, 122.6, 121.6, 52.9, 47.1, 40.7; IR (KBr)v_{max} 3123, 3065, 2954, 2929, 1651, 1598, 1489, 1458, 1408, 1325, 1176 cm⁻¹; Anal. calcd for C₃₄H₂₆Br₂N₆O: C, 58.81; H, 3.77; N, 12.10. found C, 58.70; H, 3.69; N, 11.98.

10,10-bis((1-(4-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)anthracen-9(10H)-one (9f): Yield = 0.492 g, 86%, white solid, mp 194-195 °C, ¹H NMR (400 MHz, CDCl₃): δ 8.05 (d, *J* = 7.6 Hz, 2H), 7.89 (d, *J* = 8.0 Hz, 2H), 7.67 (t, *J* = 8.0 Hz, 2H), 7.34 (t, *J* = 7.2, Hz, 2H), 6.98-6.94 (m, 4H), 6.76-6.73 (m, 4H), 5.77 (s, 2H), 5.09 (s, 4H), 3.84 (s, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 182.5, 163.9, 144.9, 134.0, 132.2, 130.4, 129.2, 129.1, 127.5, 127.2, 127.1, 121.3, 116.1, 115.8, 52.8, 47.1, 40.8; IR (KBr)v_{max} 3133, 3067, 2965, 1665, 1603, 1514, 1457, 1323, 1237, 1161 cm⁻¹; Anal. calcd for C₃₄H₂₆F₂N₆O: C, 71.32; H, 4.58; N, 14.68.found C, 71.22; H, 4.50; N, 14.59.

10,10-bis((1-propyl-1H-1,2,3-triazol-4-yl)methyl)anthracen-9(10H)-one (9g): Yield = 0.330 g, 75%, white solid, mp 188-189 °C, ¹H NMR (400 MHz, CDCl₃): δ 8.14 (d, *J* = 8.0 Hz, 2H), 7.93 (d, *J* = 8.0 Hz, 2H), 7.72 (t, *J* = 7.6 Hz, 2H), 7.41 (t, *J* = 7.6 Hz, 2H), 5.86 (s, 2H), 3.91-3.82 (m, 8H), 1.53-1.46 (m, 4H), 0.57 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 182.9, 145.2, 142.8, 134.1, 132.5, 127.6, 127.3, 127.2, 121.1, 51.6, 46.9, 40.9, 23.5, 10.7; IR (KBr)v_{max} 3133, 3063, 2965, 2934, 2876, 1666, 1602, 1457, 1385, 1352, 1323, 1215 cm⁻¹; Anal. calcd for C₂₆H₂₈N₆O: C, 70.89; H, 4.41; N, 19.08. found C, 70.77; H, 4.35; N, 18.97.

10,10-bis((1-butyl-1H-1,2,3-triazol-4-yl)methyl)anthracen-9(10H)-one (9h): Yield = 0.351 g, 75%, white solid, mp 176-177 °C, ¹H NMR (400 MHz, CDCl₃): δ 8.18 (d, *J* = 8.0 Hz, 2H), 7.96 (d, *J* = 8.4 Hz, 2H), 7.76 (t, *J* = 8.4 Hz, 2H), 7.44 (t, *J* = 7.2 Hz, 2H), 5.89 (s, 2H), 3.94 (t, *J* = 7.2 Hz, 4H), 3.88 (s, 4H), 1.52-1.45 (m, 4H), 0.98-0.88 (m, 4H), 0.77 (t, *J* = 7.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 182.9, 145.2, 142.8, 134.1, 132.5, 127.6, 127.3, 127.2, 121.1, 49.7, 46.9, 40.9, 32.0, 19.4, 13.4; IR (KBr)ν_{max}

3129, 3071, 2957, 2928, 2856, 1666, 1603, 1461, 1324, 1215cm⁻¹; Anal. calcd for C₂₈H₃₂N₆O: C, 71.77; H, 6.88; N, 17.93. found C, 71.65; H, 6.79; N, 17.83.

10,10-bis((1-(sec-butyl)-1H-1,2,3-triazol-4-yl)methyl)anthracen-9(10H)-one (9i): Yield = 0.365 g, 78%, white solid, mp 149-150 °C, ¹H NMR (400 MHz, CDCl₃): δ 8.11 (d, *J* = 7.6 Hz, 2H), 7.92 (d, *J* = 8.4 Hz, 2H), 7.70 (t, *J* = 7.2 Hz, 2H), 7.38 (t, *J* = 7.6 Hz, 2H), 5.83 (s, 2H), 4.11 (q, *J* = 7.6 Hz, 2H), 3.84 (s, 4H), 1.49-1.36 (m, 4H), 1.14 (d, *J* = 6.8 Hz, 6H), 0.40 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 182.8, 145.3, 142.6, 134.0, 132.5, 127.5, 127.4, 127.1, 119.1, 58.4, 47.1, 40.8, 30.1, 20.6, 10.0; IR (KBr)v_{max} 3137, 3067, 3036, 2963, 2935, 2875, 1666, 1603, 1479, 1459, 1351, 1326, 1217 cm⁻¹; Anal. calcd for C₂₈H₃₂N₆O: C, 71.77; H, 6.88; N, 17.93. found C, 71.64; H, 6.78; N, 17.82.

10,10-bis((1-hexyl-1H-1,2,3-triazol-4-yl)methyl)anthracen-9(10H)-one (9j): Yield = 0.330 g, 75%, white solid, mp 162-163 °C, ¹H NMR (400 MHz, CDCl₃): δ 8.15 (d, *J* = 8.0 Hz, 2H), 7.92 (d, *J* = 7.6 Hz, 2H), 7.71 (t, *J* = 8.0 Hz, 2H), 7.41 (t, *J* = 8.0 Hz, 2H), 5.86 (s, 2H), 3.90 (t, *J* = 7.2 Hz, 4H), 3.85 (s, 4H), 1.50-1.43 (m, 4H), 1.19-1.06 (m, 8H), 0.94-0.86 (m, 4H), 0.81 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 182.9, 145.3, 142.8, 134.1, 132.6, 127.6, 127.3, 121.1, 50.0, 46.9, 41.1, 31.1, 30.1, 25.9, 22.5, 14.1; IR (KBr)v_{max} 3132, 3061, 2953, 2931, 2860, 1668, 1603, 1459, 1383, 1323, 1213 cm⁻¹; Anal. calcd for C₃₂H₄₀N₆O: C, 70.25; H, 7.68; N, 16.02. found C, 70.11; H, 7.59; N, 15.91.

10,10-bis((1-allyl-1H-1,2,3-triazol-4-yl)methyl)anthracen-9(10H)-one (9k): Yield = 0.348 g, 80%, white solid, mp 179-180 °C, ¹H NMR (400 MHz, CDCl₃): δ 8.17 (d, *J* = 8.0 Hz, 2H), 7.95 (d, *J* = 8.0 Hz, 2H), 7.75 (t, *J* = 8.0 Hz, 2H), 7.44 (t, *J* = 8.0 Hz, 2H), 5.92 (s, 2H), 5.69-5.62 (m, 2H), 5.11 (d, *J* = 10.4 Hz, 2H), 4.77 (d, *J* = 17.2 Hz, 2H), 4.57 (d, *J* = 6.0 Hz, 4H), 3.88 (s, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 182.9, 144.9, 142.9, 134.0, 132.4, 131.1, 127.5, 127.2, 121.3, 119.1, 52.1, 46.9, 40.8; IR (KBr)v_{max} 3135, 3066, 2959, 2916, 2823, 1665, 1601, 1458, 1323, 1217 cm⁻¹; Anal. calcd for C₂₆H₂₄N₆O: C, 71.54; H, 5.54; N, 19.25. found C, 71.43; H, 5.45; N, 19.13.

diethyl2,2'-(4,4'-((10-oxo-9,10-dihydroanthracene-9,9-diyl)bis(methylene))bis(1H-1,2,3-triazole-4,1diyl))diacetate (9l): Yield = 0.423 g, 80%, white solid, mp 153-154 °C, ¹H NMR (400 MHz, CDCl₃): δ 8.14 (d, *J* = 8.0 Hz, 2H), 7.94 (t, *J* = 8.0 Hz, 2H), 7.73 (t, *J* = 8.0 Hz, 2H), 7.40 (t, *J* = 7.6 Hz, 2H), 6.06 (s, 2H), 4.72 (s, 4H), 4.07 (q, *J* = 6.8 Hz, 4H), 3.88 (s, 4H), 1.13 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 182.8, 165.9, 144.9, 143.1, 133.9, 132.3, 127.5, 127.3, 122.7, 62.2, 50.6, 46.7, 40.7, 13.9; IR (KBr)v_{max} 3170, 3138, 2987, 2939, 2845, 2861, 1755, 1666, 1603, 1459, 1354, 1324, 1263, 1231 cm⁻¹; Anal. calcd for C₂₈H₂₈N₆O₅ C, 63.63; H, 5.34; N, 15.90. found C, 63.50; H, 5.25; N, 15.78.

10-((1-(4-nitrobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-10-(prop-2-yn-1-yl)anthracen-9(10H)-one (10): Yield = 0.340 g, 76%, white solid, mp 183-184 °C, ¹H NMR (400 MHz, CDCl₃): δ 8.23 (d, *J* = 8.4 Hz, 2H), 8.12 (d, *J* = 8.8 Hz, 2H), 7.79 (d, *J* = 8.0 Hz, 2H), 7.68 (t, *J* = 8.0 Hz, 2H), 7.43 (t, *J* = 8.0 Hz, 2H), 6.85 (d, *J* = 8.8 Hz, 2H), 5.87 (s, 1H), 5.23 (s, 2H), 3.73 (s, 2H), 3.21 (d, *J* = 2.4 Hz, 2H), 1.63 (t, *J* = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 183.2, 148.0, 144.8, 143.9, 141.8, 134.0, 132.5, 127.9, 127.8, 127.5, 126.7, 124.3, 121.8, 79.4, 71.8, 52.7, 46.1, 39.9, 34.6; IR (KBr)v_{max} 3287, 3139, 3073, 2926, 2852, 2301, 1657, 1602, 1517, 1460, 1348, 1324, 1224 cm⁻¹; Anal. calcd for C₂₇H₂₀N₄O₃: C, 72.31; H, 4.49; N, 12.49. found C, 72.18; H, 4.39; N, 12.37.

10-((1-(3-bromopropyl)-1H-1,2,3-triazol-4-yl)methyl)-10-(prop-2-yn-1-yl)anthracen-9(10H)-one (11): Yield = 0.282 g, 65%, semi-solid, ¹H NMR (400 MHz, CDCl₃): δ 8.31 (d, *J* = 7.6 Hz, 2H), 7.82 (d, *J* = 8.0 Hz, 2H), 7.73 (t, *J* = 8.0 Hz, 2H), 7.49 (t, *J* = 7.6 Hz, 2H), 5.94 (s, 1H), 4.04 (t, *J* = 6.8 Hz, 2H), 3.73 (s, 2H), 3.23 (d, *J* = 2.8 Hz, 2H), 2.96 (t, *J* = 6.4 Hz, 2H), 1.84-1.77 (m, 2H), 1.65 (t, *J* = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 183.3, 144.8, 142.9, 133.9, 132.5, 127.7, 127.5, 127.4, 126.5, 122.1, 121.7, 79.5, 71.6, 47.6, 46.7, 46.1, 39.7, 34.5, 32.3; IR (KBr)v_{max} 3294, 3068, 2925, 2853, 2101, 1654, 1599, 1458, 1324, 1218, 1176 cm⁻¹; Anal. calcd for C₂₃H₂₀BrN₃O: C, 63.60; H, 4.64; N, 9.67. found C, 63.48; H, 4.55; N, 9.56.

10,10-bis((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-9,10-dihydroanthracen-9-ol (12a): Yield = 0.452 g, 84%, white solid, mp 159-160 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, *J* = 7.6 Hz, 2H), 7.34 (d, *J* = 7.6 Hz, 2H), 7.31-7.23 (m, 8H), 7.22-7.18 (m, 2H), 6.89 (d, *J* = 8.4 Hz, 2H), 6.79 (d, *J* = 6.8 Hz, 2H), 6.31 (s, 1H), 5.67 (s, 1H), 5.18 (s, 2H), 5.13 (s, 2H), 5.00 (s, 1H), 4.98 (s, 1H), 3.69 (s, 2H), 3.67 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 144.6, 144.3, 138.4, 137.9, 135.0, 134.8, 129.0, 128.9, 128.8, 128.4, 127.7, 127.5, 127.1, 126.6, 122.6, 121.7, 67.8, 53.7, 53.6, 46.5, 40.4, 40.3; IR (KBr)v_{max} 3532, 3146, 3061, 3035, 2924, 2825, 1601, 1543, 1490, 1415, 1352, 1325, 1220 cm⁻¹; Anal. calcd for C₃₄H₃₀N₆O: C, 75.81; H, 5.61; N, 15.60. found C, 75.65; H, 5.53; N, 15.48.

10,10-bis((1-(4-nitrobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-9,10-dihydroanthracen-9-ol (12b): Yield = 0.502 g, 80%, white solid, mp 226-227 °C, ¹H NMR (400 MHz, CD₂Cl₂): δ 8.10 (d, *J* = 8.4 Hz, 4H), 7.62 (d, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 7.6 Hz, 2H), 7.34 (t, *J* = 7.2 Hz, 2H), 7.27 (t, *J* = 7.2 Hz, 2H), 7.01 (d, *J* =

8.4 Hz, 2H), 6.89 (d, J = 8.4 Hz, 2H), 6.56 (s, 1H), 5.89 (s, 1H), 5.33 (s, 2H), 5.25 (s, 2H), 5.13 (s, 1H), 5.12 (s, 1H), 3.73 (s, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 145.8, 145.6, 141.8, 137.7, 136.6, 126.7, 126.6, 126.1, 125.6, 124.9, 124.8, 122.2, 122.1, 121.5, 64.3, 50.3, 44.9, 36.5; IR (KBr)v_{max} 3543, 3132, 2962, 2927, 2855, 1603, 1517, 1487, 1421, 1754, 1261, 1218 cm⁻¹; Anal. calcd for C₃₄H₂₈N₈O₅: C, 63.96; H, 4.49; N, 17.82. found C, 63.83; H, 4.38; N, 18.70.

10,10-bis((1-propyl-1H-1,2,3-triazol-4-yl)methyl)-9,10-dihydroanthracen-9-ol (12c): Yield = 0.318 g, 72%, white solid, mp 141-142 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, *J* = 7.6 Hz, 2H), 7.51 (d, *J* = 7.6 Hz, 2H), 7.35-7.31 (m, 2H), 7.28-7.26 (m, 2H), 6.40 (s, 1H), 5.79 (s, 1H), 5.32 (s, 1H), 3.96 (t, *J* = 7.2 Hz, 2H), 3.90-3.85 (m, 3H), 3.69-3.68 (m, 4H), 1.61 (q, *J* = 7.2 Hz, 2H), 1.53 (q, *J* = 7.2 Hz, 2H), 0.69 (t, *J* = 7.2 Hz, 3H), 0.59 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 144.1, 143.9, 138.9, 138.0, 129.0, 128.6, 127.3, 126.8, 122.5, 121.5, 111.9, 68.4, 51.7, 51.5, 46.6, 40.6, 39.8, 23.7; IR (KBr)v_{max} 3537, 3132, 2964, 2927, 2875, 1602, 1542, 1490, 1457, 1328, 1261 cm⁻¹; Anal. calcd for C₂₆H₃₀N₆O: C, 70.56; H, 6.83; N, 18.99. found C, 70.45; H, 6.72; N, 18.88.

diethyl 2,2'-(4,4'-((10-hydroxy-9,10-dihydroanthracene-9,9-diyl)bis(methylene))bis(1H-1,2,3-triazole-4,1-diyl))diacetate (12d): Yield = 0.413 g, 78%, white solid, mp: 145-146 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.65 (d, *J* = 8.0 Hz, 2H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.33 (t, *J* = 7.6 Hz, 2H), 7.21 (t, *J* = 7.2 Hz, 2H), 6.17 (s, 1H), 5.95 (s, 1H), 5.20 (s, 1H), 4.72 (s, 2H), 4.70 (s, 2H), 4.68 (s, 1H), 4.08-4.02 (m, 4H), 3.74 (s, 2H), 3.66 (s, 2H), 1.15-1.11 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 166.7, 166.1, 144.1, 138.3, 137.7, 128.7, 128.3, 127.6, 127.1, 126.5, 123.4, 122.9, 66.8, 62.4, 62.2, 50.6, 50.4, 46.6, 40.6, 40.3, 14.0, 13.9; IR (KBr)v_{max} 3537, 3143, 2986, 2943, 1746, 1603, 1547, 1489, 1463, 1383, 1221 cm⁻¹; Anal. calcd for C₂₈H₃₀N₆O₅: C, 63.38; H, 5.70; N, 15.84. found C, 63.25; H, 5.59; N, 15.72.

4,4'-((10-((1-benzyl-1H-1,2,3-triazol-4-yl)methoxy)-9,10-dihydroanthracene-9,9

diyl)bis(methylene))bis(1-benzyl-1H-1,2,3-triazole) (13): Yield = 0.510 g, 72%, Semi-solid, ¹H NMR (400 MHz, CDCl₃): δ 7.50 (d, J = 8.0 Hz, 2H), 7.34-7.32 (m, 5H), 7.27-7.15 (m, 12H), 6.97-6.95 (m, 2H), 6.75 (d, J = 7.2 Hz, 2H), 6.28 (s, 1H), 5.71 (s, 1H), 5.42 (s, 2H), 5.11-5.09 (m, 4H), 5.07 (s, 2H), 3.81 (s, 2H), 3.71 (s, 2H), 3.64 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 145.7, 144.4, 144.2, 140.2, 134.9, 134.7, 134.6, 129.0, 128.8, 128.7, 128.4, 128.3, 128.2, 128.1, 127.8, 127.2, 127.1, 126.8, 122.7, 122.5, 121.8, 74.5, 58.3, 53.9, 53.5, 53.3, 47.1, 40.7, 38.4; IR (KBr)v_{max} 3135, 3061, 3031, 2925, 2847, 1603, 1544,

1496, 1453, 1325, 1217 cm⁻¹; Anal. calcd for $C_{44}H_{39}N_9O$: C, 74.45; H, 5.54; N, 17.76. found C, 74.32; H, 5.46; N, 17.64.

¹H NMR spectra of **2**

¹³C NMR spectra of **2**

17

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2014

¹H NMR spectra of **4**

¹³C NMR spectra of 4

¹H NMR spectra of **5**

¹³C NMR spectra of **5**

¹H NMR spectra of **8a**

¹³C NMR spectra of **8a**

¹H NMR spectra of **8b**

¹³C NMR spectra of **8b**

¹H NMR spectra of 8c

¹³C NMR spectra of **8c**

¹H NMR spectra of 8d

¹³C NMR spectra of **8d**

¹H NMR spectra of 8e

¹³C NMR spectra of **8e**

¹H NMR spectra of **8f**

 ^{13}C NMR spectra of 8f

33

¹H NMR spectra of 8g

¹³C NMR spectra of **8g**

¹H NMR spectra of **8h**

¹³C NMR spectra of **8h**

 $^1\mathrm{H}$ NMR spectra of 8i

¹³C NMR spectra of 8i

¹H NMR spectra of **8j**

¹³C NMR spectra of **8j**

¹H NMR spectra of **9a**

¹³C NMR spectra of **9a**

¹H NMR spectra of **9b**

¹³C NMR spectra of **9b**

¹H NMR spectra of **9c**

¹³C NMR spectra of **9c**

 1 H NMR spectra of **9d**

¹³C NMR spectra of **9d**

¹H NMR spectra of **9e**

¹³C NMR spectra of **9e**

¹H NMR spectra of **9f**

¹³C NMR spectra of **9f**

¹H NMR spectra of **9g**

¹³C NMR spectra of **9g**

¹H NMR spectra of **9h**

¹³C NMR spectra of **9h**

¹H NMR spectra of **9i**

¹³C NMR spectra of **9i**

¹H NMR spectra of **9**j

¹³C NMR spectra of **9**j

 1 H NMR spectra of **9**k

¹³C NMR spectra of **9**k

¹H NMR spectra of **9**l

¹³C NMR spectra of **9**

65

¹H NMR spectra of **10**

¹³C NMR spectra of **10**

¹H NMR spectra of **11**

¹³C NMR spectra of **11**

¹H NMR spectra of **12a**

¹³C NMR spectra of **12a**

71

¹H NMR spectra of **12b**

¹³C NMR spectra of **12b**

¹H NMR spectra of **12c**

¹³C NMR spectra of **12c**

¹H NMR spectra of **12d**

¹³C NMR spectra of **12d**

77

¹H NMR spectra of **13**

¹³C NMR spectra of **13**

