Synthesis of Novel [3,1]-Benzothiazepines and [3,1]-Benzoxazepines Derivatives with Antitumoral Activity

Walter R. Martínez, Gardenia C. G. Militão, Teresinha G. da Silva, Ricardo O. Silva,

Paulo H. Menezes

Contents

1. General Remarks	S2
2. Experimental Procedures	S 3
3. Spectra	S10

1. General Remarks

1.1. Material

All reagents and solvents used were previously purified and dried in agreement with the literature.¹ Isothiocyanates and isocyanates were purchased from Aldrich Chemical Co. All other commercially available reagents were used as received. Reactions were monitored by thin-layer chromatography on 0.25 mm E. Merck silica gel 60 plates (F₂₅₄) using UV light as visualizing agents. Column chromatography purification was performed using Silica Gel 60 (230-400 mesh). All compounds purified by chromatography were sufficiently pure for use in further experiments.

1.2. Instrumentation

All spectra were performed at 300 and 75 MHz to ¹H and ¹³C nuclei, respectively using a 5 mm PFG probe. The samples were solubilized in DMSO- d_6 or CDCl₃ and the residual signal of solvent was used as reference to chemical shift in ¹H and ¹³C NMR spectrum. Pulse sequence *g*HMQC was optimized to ¹ $J_{C,H}$ equal to 140 Hz, acquisition time equal to 0.228 s, relaxation delay equal to 1.00 s and 4 transients x 512 increments were used. Pulse sequence *g*HMBC was optimized to ³ $J_{C,H}$ equal to 8.0 Hz, acquisition time equal to 1.00 s and 8 transients x 400 increments were used. Low resolution mass spectra (70 eV) used helium 4.5 as a carrier gas and a DB-5 column (30 m x 0.25µm). The melting points (mp) are not corrected.

¹ Perrin, D. D.; Armarego, W. L. F. In Purification of Laboratory Chemicals; Pergamon: Oxford, **1980**.

2. Additional Experimental Procedures

2.1 General procedure for the preparation of *N***-allyI-arylamines (2a-d)** A 100 mL round-bottomed flask equipped with a magnetic stirring bar was charged with Na₂CO₃ (1.4g, 10 mmol) followed by DMF (250 mL) and the appropriate arylamine (1.5 equiv, 15 mmol). Allyl bromide (1.20 g, 1.0 equiv, 10 mmol) was then added using an addition funnel over an 8h period at 0°C. The reaction mixture was stirred for additional 16 h at room temperature and then filtered. The solution was diluted with CH₂Cl₂ (2 x 50 mL) and washed with water. The combined organic phases were dried over MgSO₄, filtered, and solvents were removed under reduced pressure followed by purification by a flash column chromatography [hexanes:EtOAc (60:1)].

N-allyl-aniline (2a): Isolated as a yellow oil; obtained 1.0 g (77%); IR (thin film) v_{max} 3413, 1643, 1603, 1506, 1316, 1262, 994, 920, 750, 693, 509 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 3.79 (br s, 1H, -NH), 3.83 (dt, *J* =5.4, 1.5 Hz, 2H, N-CH₂), 5.24 (dq, *J* =10.5, 1.5 Hz, 1H, =CH_AH), 5.36 (dq, *J* =16.8, 1.5 Hz, 1H, =CHH_B), 6.09-5.96 (m, 1H, -CH=), 6.70 (dd, *J* =8.2, 1.0 Hz, 2H, H-2, H-6), 6.79 (t, *J* =7.5 Hz, 1H, H-4), 7.23-7.17 (m, 2H, H-3, H-5); ¹³C NMR (75 MHz, CDCl₃) δ 46.4 (N-CH₂), 112.9 (2C, C-2, C-6), 116.1 (=CH₂), 117.4 (C-4), 129.1 (2C, C-3, C-5), 135.3 (-CH=), 147.9 (C-1); MS(EI-70 eV) *m/z* (%): 133 (M*+, 82) 106 (100), 104 (29), 92 (10), 77 (76), 65 (92).

N-allyl-4-choro-aniline (2b): Isolated as a yellow oil; obtained 1.22 g (73%); IR (thin film) v_{max} 3421, 1645, 1600, 1502, 1316, 994, 922, 815, 506 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 3.76 (dt, *J* =5.4, 1.5 Hz, 2H, N-CH₂), 5.20 (dq, *J* =10.2, 1.5 Hz, 1H, =CH_AH), 5.29 (dq, *J* =17.4, 1.5 Hz, 1H, =CHH_B), 6.01-5.88 (m, 1H, - CH=), 6.57 (d, *J* =9.0 Hz, 2H, H-2, H-6), 7.14 (d, *J* =9.0 Hz, 1H, H-3,H-5); ¹³C NMR (75 MHz, CDCl₃) δ 46.7 (N-CH₂), 114.2 (2C, C-2, C-6), 116.6 (=CH₂), 122.3 (C-4), 134.7 (-CH=), 129.0 (2C, C-3, C-5), 146.2 (C-1); MS(EI-70 eV) *m/z* (%): 167 (M⁺⁺, ³⁵Cl, 92) 140 (100), 138 (37), 126 (17), 111 (21), 99 (31).

N-allyl-4-fluoro-aniline (2c): Isolated as a yellow oil; obtained 1.14 g (75%); IR (thin film) v_{max} 3423, 1602, 1514, 1219, 922, 822 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.69 (br s, 1H, -NH), 3.74 (d, *J* =5.2 Hz, 2H, N-CH₂), 5.19 (dd, *J* =10.4, 1.6 Hz, 1H, =CH_AH), 5.30 (dd, *J* =17.2, 1.6 Hz, 1H, =CHH_B), 6.10-5.88 (m, 1H, -CH=), 6.72-6.50 (m, 2H, H-2, H-6), 7.09-6.83 (m, 2H, H-3, H-5); ¹³C NMR (100 MHz, CDCl₃) δ 47.1 (N-CH₂), 113.7 (d, *J* =6.9 Hz, 2C, C-2, C-6), 115.5 (d, *J* =22.5 Hz, 2C, C-3, C-5), 116.2 (=CH₂), 135.3 (-CH=), 144.4 (C-1), 155.8 (d, *J* =233.9, C-4); MS(EI-70 eV) *m/z* (%): 151 (M⁺⁺, 85) 124 (100), 122 (24), 110 (20), 95 (29), 83 (38).

N-allyl-naphthylamine (2d): Isolated as a red oil; obtained 1.63 g (89%); IR (thin film) v_{max} 3440, 1643, 1582, 1525, 1480, 1407, 993, 920, 769, 570, 421 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 3.98 (dt, *J* =5.7, 1.5 Hz, 2H, N-CH₂-), 5.27 (dd, *J* =10.5, 1.8 Hz, 1H, =CH_AH), 5.40 (dd, *J* =16.8, 1.8 Hz, 1H, =CHH_B), 6.18-6.05 (m, 1H, -CH=), 6.66 (d, *J* =7.5 Hz, 1H, H-2), 7.29 (d, *J* =7.8 Hz, 1H, H-4), 7.38 (dd, *J* =7.8, 7.5 Hz, 1H, H-3), 7.51-7.44 (m, 2H, H-6, H-7), 7.86-7.81 (m, 2H, H-5, H-8); ¹³C NMR (75 MHz, CDCl₃) δ 46.8 (N-CH₂), 104.9 (C-2), 116.7 (=CH₂), 117.6 (C-4), 119.8 (C-8), 123.4 (C-8a), 124.7 (C-7), 125.7 (C-6), 126.5 (C-3), 128.7 (C-5),

134.2 (C-4a), 135.0 (-CH=), 142.9 (C-1); MS(EI-70 eV) *m/z* (%): 183 (M⁺⁺, 94), 156 (12), 154 (14),142 (33),127 (22), 115 (100).

2.2 General procedure for the preparation of 2-allyl-arylamines (3a-d) A 25 mL round-bottomed flask equipped with a reflux condenser was charged with the appropriate *N*-allyl-arylamine (**2a-d**) (1.0 equiv, 1.0 mmol) and BF₃•OEt₂ (212 mg, 1.5 equiv, 1.5 mmol). The reaction mixture was heated at 140 °C (**3a-c**) or 114 °C (**3d**) for 12 hours, then treated with a saturated aqueous solution of Na₂CO₃ (10 mL) and extracted with CH₂Cl₂ (2x 50 mL). The combined organic phases were dried with MgSO₄, filtered, and solvents were removed under reduced pressure followed by purification by a flash column chromatography [hexanes:EtOAc (40:1)].

2-Allyl-aniline (3a): Isolated as a yellow oil; obtained 0.83 g (62%); IR (thin film) v_{max} 3448, 3369, 1622, 1494, 1458, 916, 751 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 3.34 (d, *J* =6.3 Hz, 2H, -CH₂-), 3.71 (br s, 2H, -NH₂), 5.18-5.10 (m, 2H, =CH₂), 6.05-5.91 (m, 1H, -CH=), 6.72 (d, *J* =7.5 Hz, 1H, H-6), 6.79 (t, *J* =7.0 Hz, 1H, H-4), 7.07-7.12 (m, 2H, H-3, H-5); ¹³C NMR (75 MHz, CDCl₃) δ 36.4 (-CH₂-), 115.9 (C-6), 116.1 (=CH₂), 119.0 (C-4), 124.1 (C-2), 127.5 (C-5), 130.1 (C-3), 135.8 (-CH=), 144.4 (C-1); MS(EI-70 eV) *m/z* (%): 133 (M^{•+}, 100), 118 (71), 106 (49), 132 (68), 91(22).

2-allyl-4-choro-aniline (3b): Isolated as a yellow oil; obtained 1.21 g (72%); IR (thin film) v_{max} 3458, 3381, 1622, 1491, 1415, 1284, 997, 920, 814 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.26 (d , *J* =6.0 Hz, 2H, -CH₂-), 3.67 (br s, 2H, -NH₂), 5.11 (d, *J* =17.2 Hz, 1H, =CHH_B), 5.16 (d, *J* =10.0 Hz, 1H, =CH_AH), 5.97-5.87 (m, 1H, -CH=), 6.61 (dd, *J* =6.4, 2.8 Hz, 1H, H-6), 7.03-7.01 (m, 2H, H-3, H-5); ¹³C NMR (100 MHz, CDCl₃) δ 36.2 (-CH₂-), 116.7 (=CH₂), 116.8 (C-6), 123.3 (C-4), 125.7 (C-2), 127.1 (C-5), 129.7 (C-3), 134.9 (-CH=), 143.0 (C-1); MS(EI-70 eV) *m/z* (%): 167 (M⁺⁺, ³⁵Cl, 100), 152 (35), 140 (33), 132 (56), 125(6), 117 (76).

2-allyl-4-fluoro-aniline (3c): Isolated as a yellow oil; obtained 1.10 g (73%); IR (thin film) v_{max} 3446, 3369, 1626, 1500, 1234, 918, 814 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 3.27 (d, *J* =6.0 Hz, 2H, -CH₂-), 3.54 (br s, 2H, -NH₂), 5.20-5.07 (m, 2H, =CH₂), 6.00-5.90 (m, 1H, -CH=), 6.65-6.59 (m, 1H, H-6), 6.84-6.74 (m, 2H, H-3, H-5); ¹³C NMR (75 MHz, CDCl₃) δ 36.1 (-CH₂-), 113.5 (d, *J* =21.8 Hz, C-5), 116.3 (d, *J* =20.1 Hz, C-3), 116.5 (d, *J* =5.8 Hz, C-6), 116.6 (=CH₂), 125.6 (d, *J* =6.8Hz, C-2), 134.9 (-CH=), 140.5 (C-1), 156.3 (d, *J* = 234.6 Hz, C-4) MS(EI-70 eV) *m/z* (%): 151 (M⁺⁺, ³⁵Cl, 100), 136 (74), 124 (45), 132 (4).

2-allyl-naphthylamine (3d): Isolated as a red oil; obtained 1.48 g (81%); IR (thin film) v_{max} 3466, 3386, 3054, 1622, 1433, 1400, 996, 916, 802, 754 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 3.56 (d, *J* =6.3 Hz, 2H, -CH₂-), 4.17 (br s, 2H, -NH₂), 5.30-5.17 (m, 2H, =CH₂), 5.96-5.86 (m, 1H, -CH=), 7.31 (d, 8.1 Hz, 1H, H-4), 7.40 (d, *J* =8,4 Hz, 1H, H-3), 7.56-7.49 (m, 2H, H-6, H-7), 7.91-7.84 (*m*, 2H, H-5, H-8); ¹³C NMR (75 MHz, CDCl₃) δ 36.7 (-CH₂-), 115.9 (=CH₂), 117.6 (C-2), 118.3 (C-4), 120.2 (C-8), 123.5 (C-8a), 124.7 (C-7), 125.0 (C-6), 128.3 (C-3), 128.7 (C-5), 133.2 (C-4a), 135.5 (-CH=), 139.4 (C-1); MS(EI-70 eV) *m/z* (%): 183 (M⁺⁺, 100) 168 (31), 156 (14), 182 (33), 141 (9).

2.3 General procedure for the syntheses of [3,1]-benzothiazepines (4b-k) and [3,1]-benzoxazepines (5a-c). A mixture of **3a-d** (1.0 equiv, 1.0 mmol) and the appropriate isothiocyanate or isocyanate (1.0 equiv, 1.0 mmol) in the appropriate solvent (dichloromethane for isothiocyanates and tetrahydrofuran for isocyanates) was heated to reflux and the progress of reaction was monitored by TLC. A 1M solution of iodine in dichloromethane (1 mL) was then added at room temperature and the mixture were stirred for 3h **(4b-k)** or 24h **(5a-c)**. After this period, the reaction mixture was washed with a saturated aqueous solution of Na₂S₂O₃ (10 mL) and extracted with dichloromethane (2 x 50 mL). The combined organic phases were dried over MgSO₄, filtered, and solvents were removed under reduced pressure followed by purification by a flash column chromatography [hexanes:EtOAc (21:1)].

2-(1'-amino-4'-chlorophenyl)-7-chloro-4-iodomethyl-4,5-dihydrobenzo[*d*][**3,1**]thiazepine (4b): Isolated as a yellow solid (mp 119-120 °C); obtained 0.34 g (74%); IR (KBr) v_{max} 3386, 1618, 1506, 1306, 1114, 822, 565 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 2.69 (dd, *J* =13.2, 9.9 Hz, 1H, H_b-5), 3.14 (dd, *J* =13.2, 4.8 Hz, 1H, H_a-5), 3.58 (d, *J* = 6.6 Hz, 2H, -CH₂-I), 4.24-3.97 (m, 1H, H-4), 6.89 (d, *J* =8.4 Hz, 1H, H-9), 7.26 (dd, *J* =8.4, 2.1 Hz, 1H, H-8), 7.31 (d, *J* =2.1 Hz, 1H, H-6), 7.34 (d, *J* =9.0 Hz, 2H, H-2', H-6'), 7.91 (d, *J* =9.0 Hz, 2H, H-3', H-5'), 9.81 (s, 1H, -NH); ¹³C NMR (100 MHz, CDCl₃) δ 10.8 (-CH₂-I), 37.4 (C-5), 56.5 (C-4), 121.6 (C-9), 125.1 (2C, C-2', C-6'), 128.3 (C-8), 129.0 (2C, C-3', C-5'), 129.1 (C-6), 129.2 (C-5a) 129.8 (C-4'), 131.1 (C-7), 137.6 (C-1'), 141.0 (C-9a). HRMS (ESI, m/z) calcd for C₁₆H₁₄Cl₂IN₂S [M + H]⁺: 462.9299; found: 462.9300.

2-(1'-amino-3',4'-dimethylphenyl)-7-choro-4-iodomethyl-4,5-dihydrobenzo[d][3,1]thiazepine (4c): Isolated as a white solid (mp 126-127 °C); obtained 0.17 g (37%); IR (KBr) v_{max} 3400, 1604, 1506, 1309, 1157, 818, 546 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 2.16 (s, 3H, -CH₃), 2.18 (s, 3H, -CH₃), 2.66 (dd, *J* =13.2, 11.7 Hz, 1H, H_b-5), 3.14 (dd, *J* =13.2, 4.8 Hz, 1H, H_a-5), 3.66-3.51 (m, 2H, -CH₂-I), 4.05 (br s, 1H, H-4), 6.86 (d, *J* =8.7 Hz, 1H, H-9), 7.04 (d, *J* =8.1 Hz, 1H, H-5'), 7.25 (dd, *J* =8.7, 2.4 Hz, 1H, H-8), 7.29 (d, *J* =2.4 Hz, 1H, H-6), 7.59 (d, *J* =8.1 Hz, 1H, H-6'), 7.60 (s, 1H, H-2'), 9.48 (s, 1H, -NH); ¹³C NMR (100 MHz, CDCl₃) δ 11.1 (-CH₂-I), 19.1 (-CH₃,), 19.9 (-CH₃), 37.5 (C-5), 56.2 (C-4), 117.6 (C-5'), 121.3 (C-9), 125.0 (C-6), 128.0 (C-8), 128.3 (C-5a), 128.9 (C-2'), 129.7 (C-6'), 131.1 (C-7), 132.4 (C-4'), 137.1 (C-3'), 137.2 (C-1'), 146.0 (C-9a). HRMS (ESI, m/z) calcd for C₁₈H₁₉CIIN₂S [M + H]⁺: 457.0002; found: 457.0002.

2-(1'-amino-naphthyl)-7-chloro-4-iodomethyl-4,5-dihydrobenzo[d][3,1]thiazepine (4d): Isolated as a yellow solid (mp 113-114 °C); obtained 0.30 g (63%); IR (KBr) v_{max} 3384, 1610, 1570, 1521, 1476, 1141, 771, 554 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.95 (t, *J* =12.8 Hz, 1H, H_b-5), 3.26 (d, *J* = 9.6 Hz, 1H, H_a-5), 3.45 (d, *J* =10.0 Hz, 2H, -CH₂-I), 3.96 (br s, 1H, H-4), 6.94 (d, *J* =6.0 Hz, 1H, H-9), 7.26 (br s, 2H, H-6, H-8), 7.66-7.43 (m, 3H, H-6', H-7', H-8'), 7.73 (d, *J* =7.2 Hz, 1H, H-4'), 8.02-7.87 (m, 2H, H-3', H-5'), 8.08 (br s, 1H, H-2'); ¹³C NMR (100 MHz, CDCl₃) δ 11.1 (-CH₂-I), 37.5 (C-5), 55.6 (C-4), 120.0 (C-4'), 121.0 (C-8'), 124.9 (C-9), 125.4 (C-8), 125.7 (C-6'), 126.2 (C-2'), 126.4 (C-3'), 126.8 (C-5a), 128.1 (C-7'), 128.8 (C-5'), 128.9 (C-1'), 129.1 (C-6), 130.4 (C-8a'), 131.5 (C-7), 134.2 (C-4a'), 149.5 (C-9a).HRMS (ESI, m/z) calcd for C₂₀H₁₇ClIN₂S[M + H]⁺: 478.9846; found: 478.9846.

2-(1'-amino-4'-chlorophenyl)-7-fluoro-4-iodomethyl-4,5-dihydrobenzo[d][3,1]thiazepine (4e): Isolated as a yellow solid (mp 117-118 °C); obtained 0.31 g (69%); IR (KBr) v_{max} 3413, 1620, 1479, 1304, 1140, 815 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 2.68 (dd, *J* =13.2, 10.2 Hz, 1H, H_b-5), 3.14 (dd, *J* =13.2, 4.5 Hz, 1H, H_a-5), 3.58 (d, *J* = 6.6 Hz, 2H, -CH₂-I), 4.15-4.01 (m, 1H, H-4), 6.89 (dd, *J* =8.4, 5.4 Hz, 1H, H-9), 7.04 (dd, *J* =8.4, 2.7 Hz, 1H, H-8), 7.11 (dd, *J* =9.3, 2.7 Hz, 1H, H-6), 7.34 (d, *J* =9.0 Hz, 2H, H-2', H-6'), 7.92 (d, *J* =9.0 Hz, 2H, H-3', H-5'), 9.76 (s, 1H, -NH); ¹³C NMR (100 MHz, CDCl₃) δ 11.0 (-CH₂-I), 37.5 (C-5), 56.5 (C-4), 114.8 (d, *J* =22.5 Hz, C-8), 115.8 (d, *J* = 22.4 Hz, C-6), 121.1 (2C, C-2', C-6'), 125.0 (d, *J* =7.8 Hz, C-9), 128.6 (C-4'), 128.9 (2C, C-3', C-5'), 130.9 (d, *J* =7.8 Hz, C-5a), 138.0 (C-1'), 159.0 (d, *J* =241.6 Hz, C-7). HRMS (ESI, m/z) calcd for C₁₆H₁₄CIFIN₂S [M + H]⁺: 446.9595; found: 446.9595.

2-(1'-amino-naphthyl)-7-fluoro-4-iodomethyl-4,5-dihydrobenzo[*d*][**3,1**]thiazepine (4f): Isolated as a yellow solid (mp 116-117 °C); obtained 0.35 g (76%); IR (KBr) v_{max} 3444, 1620, 1479, 1238, 1134, 775 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 2.90-2.70 (m, 1H, H_b-5), 3.23 (dd, *J* = 13.2, 4.2 Hz, 1H, H_a-5), 3.56 (br s, 2H, -CH₂-I), 3.98 (br s, 1H, H-4), 6.74 (br s, 1H, H-9), 7.06-6.96 (m, 1H, H-6), 7.11 (dd, 9.0, 2.7 Hz, 1H, H-8), 7.62-7.46 (m, 4H, H-3', H-6', H-7', H-8'), 7.81-7.71 (m, 1H, H-4'), 7.98-7.89 (m, 1H, H-5'), 8.12-8.00 (m, 1H, H-2'); ¹³C NMR (100 MHz, CDCl₃) δ 11.0 (-CH₂-I), 37.5 (C-5), 55.4 (C-4), 114.8 (d, *J* = 21.7 Hz, C-8), 115.9 (d, *J* = 23.3 Hz , C-6), 119.8 (C-4'), 121.0 (C-8'), 125.0 (d, *J* = 8.6 Hz , C-9), 125.3 (C-7'), 125.7 (C-6'), 126.1 (C-2'), 126.3 (C-3'), 126.9 (C-5a), 128.7 (C-5'), 134.4 (C-4'a), 147.1 (C-9a), 159.1 (d, *J* = 241.6 Hz, C-7). HRMS (ESI, m/z) calcd for C₂₀H₁₇FIN₂S [M + H]⁺: 463.0141; found: 463.0141.

2-(1'-amino-phenyl)-4-iodomethyl-4,5-dihydronaphtho[1,2-*d***][3,1]thiazepine (4g):** Isolated as a white solid (mp 139-140 °C); obtained 0.23 g (52%); IR (KBr) v_{max} 3484, 1610, 1585, 1514, 1381, 1309, 809, 754, 689, 576 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.06 (dd, *J* =13.6, 9.6 Hz, 1H, H_b-5), 3.36 (dd, *J* =13.6, 4.4 Hz, 1H, H_a-5), 3.57-3.46 (m, 2H, -CH₂-I), 4.25-4.14 (m, 1H, H-4), 7.16 (t, *J* =7.2 Hz, 1H, H-4'), 7.38 (d, *J* =8.4 Hz, 1H, H-11), 7.43 (d, *J* =7.6 Hz, 2H, H-2', H-6'), 7.53-7.45 (m, 2H, H-7, H-9), 7.60 (d, *J* =8.4 Hz, 1H, H-10), 8.32-8.24 (m, 1H, H-8), 7.84-7.80 (m, 1H, H-6), 7.88 (d, *J* =7.6 Hz, 2H, H-3', H-5'); ¹³C NMR (100 MHz, CDCl₃) δ 11.3 (-CH₂-I), 37.9 (C-5), 59.2 (C-4), 119.7 (C-2', C-6'), 123.6 (C-10), 123.7 (C-8), 124.2 (C-4'), 125.7 (C-9), 125.8 (C-7), 127.5 (C-6), 127.6 (C-11), 128.5 (C-11a), 129.1 (C-3', C-5'), 133.5 (C-7a), 139.8 (C-1'), 147.2 (C-11b). HRMS (ESI, m/z) calcd for C₂₀H₁₈IN₂S [M + H]⁺: 445.0230; found: 445.0131.

2-(1'-amino-4'-chlorophenyl)-4-iodomethyl-4,5-dihydronaphtho[1,2-*d***][3,1]thiazepine (4h):** Isolated as a yellow solid (mp 131-132 °C); obtained 0.37 g (77%); IR (KBr) v_{max} 3398, 1603, 1581, 1503, 1395, 1301, 1242, 807, 754, 681, 545, 433 cm⁻¹; ¹H NMR (300 MHz, Acetone-*d*₆) δ 3.03 (*dd*, *J* =13.5, 9.9 Hz, 1H, H_b-5), 3.40 (*dd*, *J* =13.5, 4.5 Hz, 1H, H_a-5), 3.63 (*dd*, *J* =10.2, 5.7 Hz, 1H, , -CHH_c-I), 3.69 (*dd*, *J* =18.3, 10.2 Hz, 1H, -CHH_d-I), 4.26-4.24 (*m*, 1H, H-4), 7.41 (*d*, *J* =8.7 Hz, 2H, H-3', H-5'), 7.44 (*d*, *J* =8.1 Hz, 1H, H-6), 7.50-7.47 (*m*, 2H, H-8, H-9), 7.61 (*d*, *J* =8.1 Hz, 1H, H-7), 7.87-7.84 (*m*, 1H, H-10), 8.16 (*d*, *J* =8.7 Hz, 2H, H-2', H-6'), 8.20 (*dd*, *J* = 9.9, 5.4 Hz, 1H, H-11), 8.98 (*br s*, 1H, -NH); ¹³C NMR (75 MHz, Acetone-*d*₆) δ 12.8 (-CH₂-I), 38.9 (C-5), 60.2 (C-4), 122.2 (2C, C-2', C-6'), 124.0 (C-7), 125.0 (C-11), 126.4 (2C, C-8, C-9), 126.6 (C-11a), 128.1 (C-4'), 128.5 (C-10), 128.7 (C-6), 129.5 (3C, C-5a, C-5', C-3'), 134.6 (C-7a), 141.5 (C-1'), 144.5 (C-11b), 178.0 (C-2). HRMS (ESI, m/z) calcd for C₂₀H₁₇ClIN₂S [M + H]⁺: 478.9840; found: 478.9860.

2-(1'-amino-4'-fluorophenyl)-4-iodomethyl-4,5-dihydronaphtho[1,2-*d***][3,1]thiazepine (4i):** Isolated as a white solid (mp 118-119 °C); obtained 0.32 g (70%); IR (KBr) v_{max} 3392, 1602, 1587, 1502, 1401, 1307, 1211, 1152, 835, 750, 680, 557, 433 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.91 (dd, *J* =13.6, 10.0 Hz, 1H, H_b-5), 3.28 (dd, *J* =13.6, 4.8 Hz, 1H, H_a-5), 3.64-3.61 (m, 2H, -CH₂-I), 4.29-4.16 (m, 1H, H-4), 7.21 (t, *J* =8.8 Hz, 2H, H-3', H-5'), 7.40 (d, *J* =8.4 Hz, 1H, H-6), 7.50-7.43 (m, 2H, H-8, H-9), 7.58 (d, *J* =8.4, 1H, H-7), 7.87-7.85 (m, 1H, H-10), 8.10-8.06 (m, 3H, H-11, H-2', H-6'), 9.84 (s, 1H, -NH); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 13.4 (-CH₂-I), 37.8 (C-5), 58.7 (C-4), 115.1 (d, *J* =21.5 Hz, 2C, C-3', C-5'), 121.4 (d, *J* =8.2 Hz, 2C, C-2', C-6'), 122.4 (C-10), 123.6 (C-8), 125.2 (C-5a), 125.4 (C-9), 125.6 (C-7), 127.5 (C-6), 127.8 (C-11), 128.0 (C-11a), 133.0 (C-7a), 137.4 (C-1'), 147.6 (C-11b), 156.6 (d, *J* =238.9 Hz, C-4'). HRMS (ESI, m/z) calcd for C₂₀H₁₇FIN₂S [M + H]⁺: 463.0141; found: 463.0141.

2-(1'-amino-4'-methoxyphenyl)-4-iodomethyl-4,5-dihydronaphtho[**1**,2-*d*][**3**,1]thiazepine (**4**j): Isolated as a yellow solid (mp 69-70 °C); obtained 0.30 g (64%); IR (KBr) v_{max} 3386, 1604, 1585, 1507, 1241, 810, 752 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.05 (dd, *J* =13.6, 9.6 Hz, 1H, H_a-5), 3.36 (dd, *J* =13.6, 4.4 Hz, 1H, H_b-5), 3.51-3.47 (m, 2H, -CH₂-I), 3.84 (s, 3H, -OCH₃), 4.20-4.10 (m, 1H, H-4), 6.95 (d, *J* =8.4 Hz, 2H, H-2', H-6'), 7.37 (d, *J* =8.4 Hz, 1H, H-6), 7.49-7.43 (m, 2H, H-8, H-9), 7.57 (d, *J* =8.4 Hz, 1H, H-7), 7.77 (d, *J* =8.4 Hz, 2H, H-3', H-5'), 7.83-7.79 (m, 1H, H-10), 8.25-8.19 (m, 1H, H-11); ¹³C NMR (100 MHz, CDCl₃) δ 11.3 (-CH₂-I), 38.0 (C-5), 55.5 (-OCH₃), 58.8 (C-4), 114.2 (2C, C-2, C-6'), 121.6 (2C, C-3', C-5'), 123.4 (C-8), 124.3 (C-10), 124.9 (C-5a), 125.6 (C-9), 125.8 (C-7), 127.4 (C-6), 127.5 (C-11), 128.6 (C-11a), 133.1 (C-1'), 133.5 (C-11b), 156.1 (C-4').HRMS (ESI, m/z) calcd for C₂₁H₂₀IN₂OS [M + H]⁺: 475.0336; found: 475.0342.

2-(1'-amino-3',4'-dimethylphenyl)-4-iodomethyl-4,5-dihydronaphtho[**1,2-d**][**3,1**]thiazepine (4k): Isolated as a white solid (mp 135-136 °C); obtained 0.35 g (74%); IR (KBr) v_{max} 3421, 1606, 1589, 1500, 1388, 1157, 818, 752, 537cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.20 (s, 3H, -CH₃), 2.23 (s, 3H, -CH₃), 2.91 (dd, *J* =13.6, 10.0 Hz, 1H, H_a-5), 3.28 (dd, *J* =13.6, 4.4 Hz, 1H, H_b-5) 3.61 (d, *J* =7.2 Hz, 2H, -CH₂-I), 4.26-4.16 (m, 1H, H-4), 7.11 (d, *J* =8.4 Hz, 1H, H-6'), 7.40 (d, *J* =8.4 Hz, 1H, H-6), 7.49-7.43 (m, 2H, H-8, H-9), 7.56 (d, *J* =8.4 Hz, 1H, H-7), 7.76 (d, *J* =8.4 Hz, 1H, H-5'), 7.87-7.82 (m, 2H, H-2', H-10), 8.12 (d, *J* =7.6 Hz, 1H, H-11), 9.60 (s, 1H, -NH); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 13.3 (-CH₂-I), 18.8 (-CH₃), 19.7 (-CH₃), 37.8 (C-5), 58.3 (C-4), 117.4 (C-5'), 121.1 (1C, C-2'), 122.2 (C-10), 123.6 (C-8), 125.0 (C-5a), 125.3 (C-7), 125.5 (C-9), 127.4 (C-6), 127.8 (C-11), 128.1 (C-11a), 129.4 (C-6'), 130.4 (C-4'), 133.0 (C-7a), 135.9 (C-3'), 138.7 (C-1'), 147.4 (C-11b). HRMS (ESI, m/z) calcd for C₂₂H₂₂IN₂S [M + H]⁺: 473.0543; found: 473.0552.

4-(iodomethyl)-N-phenyl-4,5-dihydrobenzo[d][1,3]oxazepin-2-amine (5a): Isolated as a white solid (mp 150-151 °C); obtained 0.18 g (47%); IR (KBr) v_{max} 3315, 1643, 1522, 1375, 748 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 2.94 (dd, *J* =16.2, 2.1 Hz, 1H, H_a-5), 3.42 (dd, J= 16.2, 7.0 Hz, 1H, H_b-5), 3.48-3.32 (m, 1H, - CHH_d-I), 3.54 (dd, *J* =10.2, 3.0 Hz, 1H, -CHH_c-I), 4.92-4.81 (m, 1H, H-4), 6.93 (td, *J* =7.5, 1.0 Hz, 1H, H-7), 7.07-7.00 (m, 1H, H-4'), 7.14 (t, *J* =8.1 Hz, 1H, H-8), 7.23 (d, *J* =7.2 Hz, 1H, H-6), 7.34-7.26 (m, 2H, H-3', H-5'), 7.52 (dd, *J* =8.7, 0.9 Hz, 2H, H-2',H-6'), 7.74 (d, *J* =8.1 Hz, 1H, H-9), 8.85 (s, 1H, -NH); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 11.8 (-CH₂-I), 34.6 (C-5), 57.9 (C-4), 114.7 (C-9), 120.6 (2C, C-2', C-6'), 122.1 (C-7),

122.7 (C-4'), 124.8 (C-6), 127.1 (C-8), 128.4 (2C, C-3', C-5'), 129.0 (C-5a), 139.3 (C-1'), 143.0 (C-9a), 152.0 (C-2). HRMS (ESI, m/z) calcd for C₁₆H₁₆IN₂O [M + H]⁺: 379.0307; found: 379.0307.

7-chloro-4-(iodomethyl)-N-phenyl-4,5-dihydrobenzo[d][1,3]oxazepin-2-amine (5b): Isolated as a white solid (mp 148-149 °C); obtained 0.23 g (56%); IR (KBr) v_{max} 3354, 1660, 1529, 1329, 1236, 814, 744, 580 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.98 (d, *J* =16.8 Hz, 1H, H_a-5), 3.42-3.24 (m, 2H, -CHH_d-I, H_b-5), 3.59 (dd, *J* =9.6, 2.8 Hz, 1H, -CHH_c-I), 4.72-4.61 (m, 1H, H-4), 7.11 (t, J= 8.0 Hz, 1H, H-4'), 7.23-7.16 (m, 2H, H-3', H-5'), 7.44-7.27 (m, 5H, H-6, H-8, H-9, H-2', H-6'); ¹³C NMR (100 MHz, CDCl₃) δ 9.3 (-CH₂-I), 34.5 (C-5), 61.1 (C-4), 114.8 (C-9), 120.2 (2C, C-2', C-6'), 124.0 (C-4'), 126.1 (C-6), 127.8 (C-8), 128.2 (C-5a), 129.1 (2C, C-3', C-5'), 132.0 (C-7), 137.6 (C-1'), 140.4 (C-9a), 151.7 (C-2). HRMS (ESI, m/z) calcd for C₁₆H₁₅ClIN₂O [M + H]⁺: 412.9918; found: 412.9918.

7-fluoro-4-(iodomethyl)-N-phenyl-4,5-dihydrobenzo[d][1,3]oxazepin-2-amine (5c): Isolated as a white solid (mp 139-140 °C); obtained 0.15 g (38%); IR (KBr) v_{max} 3313, 1645, 1481, 1320, 744, 592 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.99 (d, *J* = 16.8 Hz, 1H, H_a-5), 3.33-3.23 (m, 1H, -CHH_d-I), 3.37 (dd, *J* = 16.8, 9.6 Hz, 1H, H_b-5), 3.63-3.55 (m, 1H, -CHH_c-I), 4.69 (br s, 1H, H-4), 7.01-6.83 (m, 3H, H-3', H-4', H-5'), 7.15-7.06 (m, 1H, H-6), 7.44-7.29 (m, 4H, H-8, H-9, H-2', H-6'); ¹³C NMR (100 MHz, CDCl₃) δ 9.4 (-CH₂-I), 34.7 (C-5), 61.2 (C-4), 113.3 (d, *J* = 24.0 Hz, C-8), 114.1 (d, *J* = 23.2 Hz, C-6), 114.6 (d, *J* = 8.5 Hz, C-9), 120.1 (2C, C-2', C-6'), 123.9 (C-4'), 129.1 (2C, C-3', C-5'), 132.2 (d, *J* = 8.5 Hz, C-5a), 137.7 (C-1'), 151.8 (C-2), 159.0 (d, *J* = 240.8 Hz, C-7). HRMS (ESI, m/z) calcd for C₁₆H₁₅FIN₂O [M + H]⁺: 397.0213; found: 397.0213.

2.4 Antiproliferative Activity

HL-60 (human pro-myelocytic leukemia), NCI-H292 (human lung carcinoma), HEP-2 (human larynx carcinoma) and HT29 (human colon carcinoma) were obtained from Rio de Janeiro Cell Bank (RJ-Brazil). All cancer cells were maintained in RPMI 1640 medium supplemented with 10% fetal bovine serum, 2mM glutamine, 100 U/mL penicillin, 100µg/mL streptomycin at 37°C with 5% CO₂. The cytotoxicity of all compounds was tested using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-*2H*-tetrazolium bromide (MTT) (Sigma Aldrich Co., St. Louis, MO/USA) reduction assay. For all experiments, tumor cells were plated in 96-well plates (10⁵ cells/mL for adherent cells or 3×10^5 cells/mL for leukemias). Tested Compounds (0.1–25 µg/mL) dissolved in DMSO 1% were added to each well and incubated for 72 h. Control groups received the same amount of DMSO. After 69h of treatment 25 µL of MTT (5mg/mL) was added, three hours later, the MTT formazan product was dissolved in 100 µL of DMSO, and absorbance was measured at 595 nm in plate spectrophotometer. The IC₅₀ values and their 95% confidence intervals for two different experiments were obtained by nonlinear regression using GraphPad Prism version 5.0 for Windows (GraphPad Software, San Diego, California USA)

		¹³ C	¹ H
$ \begin{array}{c} 4 \\ 3 \\ 4 \\ 6 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	1	147.9	-
	2, 6	112.9	6.70 (dd; <i>J</i> = 8.2; 1.0 Hz)
	3,5	129.1	7.23-7.17 (m)
	4	117.4	6.79 (t; <i>J</i> = 7.5 Hz)
	1'	46.4	3.83(dt; <i>J</i> = 5.4; 1.5 Hz)
	2'	135.3	6.09-5.96 (m)
	3'	116.1	<i>H_B</i> 5.36 (dq; <i>J</i> = 16.8; 1.5 Hz)
	-		<i>H_A</i> 5.24 (dq; <i>J</i> = 10.5; 1.5 Hz)
	-NH		3.79 (br s)

¹H NMR spectrum (300 MHz. CDCl₃) of compound 2a.

 13 C NMR spectrum (75 MHz. CDCl₃) of compound **2a**.

		¹³ C		¹ H	
-	1	146.2		-	
2, 6 114.2 6.57(d; J= 9.0 Hz) Cl 4_{J} 2_{H} $3,5$ 129.0 7.14 (d; J= 9.0 Hz)	2, 6	114.2		6.57(d; <i>J</i> = 9.0 Hz)	
	7.14 (d; <i>J</i> = 9.0 Hz)				
$5 \frac{1}{6} \frac{1}{N} \frac{1}{2'} H_A$	$H_{6} = \frac{1}{2} H_{A} = 4$ 122.3 -	-			
Н 2b	1'	46.7		3.76 (dt; <i>J</i> = 5.4; 1.5 Hz)	
	2'	134.7		6.01-5.88 (m)	
	<i>2'</i>	116.6	H _B	5.29 (dq; <i>J</i> = 17.4; 1.5 Hz)	
	Э	110.0	H _A	5.20 (dq; <i>J</i> = 10.2; 1.5 Hz)	

¹³C NMR spectrum (75MHz. CDCl₃) of compound **2b**.

		¹³ C		¹Н
	1	144.4		-
	2, 6	113.7 (d <i>, J</i> =6.9 Hz),		6.72-6.50 (m)
$F \xrightarrow{4}_{6} N \xrightarrow{1'}_{2'} H_B$	3,5	115.5 (d <i>, J</i> =22.5 Hz)		7.09-6.83 (m)
	4	155.8 (d <i>, J</i> =233.9 Hz)		-
H 2v	1′	47.1		3.74 (d; <i>J</i> = 5.2 Hz)
	2′	135.3		6.10-5.88 (m)
	21	116.2	H _B	5.30 (dd; <i>J</i> = 17.2; 1.6 Hz)
	3	110.2	H _A	5.19 (dd; <i>J</i> = 10.4; 1.6 Hz)
	-NH	-		3.69 (br s)

¹H NMR spectrum (400 MHz. CDCl₃) of compound **2c**.

¹³C NMR spectrum (100 MHz. CDCl₃) of compound **2c**.

	¹³ C		¹ H		
1	142.9		-		
2	104.9		6.66 (d; <i>J</i> = 7.5 Hz)		
3	126.5		7.38 (dd; <i>J</i> = 7.8; 7.5 Hz)		
4	117.6		7.29 (d; <i>J</i> = 7.8 Hz)		
4a	134.2		-		
5	128.7		7.96.7.91(m)		
8	119.8		7.80-7.81 (m)		
8a	123.4		-		
6	125.7		7.51-7.44 (m)		
7	124.7				
1'	46.8		3.98 (dt; <i>J</i> =5.7; 1.5 Hz)		
2′	135.0		6.18-6.05 (m)		
2'	116 7	H_B	5.40 (dd; <i>J</i> = 16.8; 1.8 Hz)		
3	110.7	H _A	5.27 (dd; <i>J</i> =10.5; 1.8 Hz)		

¹H NMR spectrum (300 MHz. CDCl₃) of compound **2d**.

¹³C NMR spectrum (75 MHz. CDCl₃) of compound **2d**.

		¹³ C	¹ H
	1	144.4	-
	2	124.1	-
	3	130.1	7 12 7 07 (m)
4 3 2 1' 3'	5	127.5	7.12-7.07 (11)
5 1 2'	4	119.0	6.79 (t; <i>J</i> = 7.0 Hz)
3 a	6	115.9	6.72 (d; <i>J</i> = 7.5 Hz)
	1'	36.4	3.34 (d; <i>J</i> = 6.3 Hz)
	2'	135.8	6.05- 5.91 (m)
	3'	116.1	5.18-5.10 (m)
	-NH ₂	-	3.71 (br s)

¹H NMR spectrum (300 MHz. CDCl₃) of compound 3a.

 13 C NMR spectrum (75 MHz. CDCl₃) of compound **3a**.

		¹³ C		¹ H
	1	143.0		-
	2	125.7		-
	3 129.7	7.02.7.01 (m)		
H_{B}	5	127.1		7.03-7.01 (11)
1 $2'$ H_A	4	123.3		-
⁶ NH ₂	6	116.8		6.61 (dd; <i>J</i> = 6.4; 2.8 Hz)
30 1' 2'	36.2		3.26 (d; <i>J</i> = 6.0 Hz)	
	2′	134.9		5.97-5.87 (m)
	З' 116.7 ^Н в Н _А	5.11 (d; <i>J</i> = 17.2 Hz) 5.16 (d; <i>J</i> = 10.0 Hz)		
	$-NH_2$	-		3.67 (br s)

¹H NMR spectrum (400 MHz. CDCl₃) of compound **3b**.

 13 C NMR spectrum (100 MHz. CDCl₃) of compound **3b**.

		¹³ C	¹ H	
	1	140.5	-	_
F 4 2 1' 3'	2	125.6 (d <i>, J</i> =6.8 Hz)	-	
	3	116.3 (d, <i>J</i> =20.1 Hz)	6.94.6.74(m)	
	5	113.5 (d, <i>J</i> =21.8 Hz)	0.84-0.74 (11)	
5 1 2'	$\begin{array}{c} 2 \\ 2' \\ 1 \\ NH_2 \end{array}$			
$\frac{6}{3c}$ NH ₂	6	116.5 (d <i>, J</i> = 5.8 Hz)	6.65-6.59 (<i>m</i>)	
	1'	36.1	3.27 (<i>d; J</i> = 6.0 Hz)	
	2′	134.9	6.00-5.90 (<i>m</i>)	
	3'	116.6	5.20-5.07 (<i>m</i>)	
	$-NH_2$		3.54 (br s)	

¹H NMR spectrum (300 MHz. CDCl₃) of compound **3c**.

 13 C NMR spectrum (75 MHz. CDCl₃) of compound **3c**.

		¹³ C	¹ H
	1	139.4	-
	2	117.6	
	3	128.3	7.40 (<i>d;</i> J= 8.4 Hz)
	4	118.3	7.31 (<i>d;</i> J=8.1 Hz)
3 1'	4a	133.2	-
$4 \\ 4a \\ 1 \\ 2' \\ 3' \\ 3' \\ 1 \\ 2' \\ 3' \\ 3' \\ 3' \\ 3' \\ 3' \\ 3' \\ 3'$	5	128.7	7.01.7.84 (m)
5 8a NH ₂	8	120.2	7.51-7.64 (11)
⁶ 7 ⁸ 3d	8a	123.5	-
	6	125.0	7.56-7.49 (m)
	7	124.7	
	1'	36.7	3.56 (<i>d;</i> J= 6.3 Hz)
	2'	135.5	5.96- 5.86 (<i>m</i>)
	3'	115.9	5.30-5.17 (<i>m</i>)
	$-NH_2$	-	4.17 (br s)

 1 H NMR spectrum (300 MHz. CDCl₃) of compound **3d**.

¹H NMR spectrum (75 MHz. $CDCl_3$) of compound **3d**.

	¹³ C	¹ H	
2	-	-	
4	56.5	4.24-3.97 (m)	
_		<i>H_b</i> 2.69 (dd; <i>J</i> = 13.2; 9.9 Hz)	
5	37.4	H _a 3.14 (dd; J= 13.2; 4.8 Hz)	
5a	129, 2	-	
6	129.1	7.31 (d; <i>J</i> = 2.1 Hz)	
7	131.1		
8	128.3	7.26 (dd; <i>J</i> = 8.4; 2.1 Hz)	
9	121.6	6.89 (d; <i>J</i> = 8.4 Hz)	
9a	141.0	-	
1′	137.6	-	
2', 6'	125.1	7.34 (d; <i>J</i> = 9.0 Hz)	
3', 5'	129.0	7.91 (d; <i>J</i> = 9.0 Hz)	
4'	129.8	-	
-CH ₂ -I	10.8	3.58 (d; <i>J</i> = 6.6 Hz)	
-NH	-	9.81 (s)	

¹H NMR spectrum (300 MHz. DMSO-d₆) of compound **4b**.

¹³C NMR spectrum (100 MHz. CDCl₃) of compound **4b**.

		¹³ C	¹ H
	2	-	-
	4	56.2	4.05 (br s)
	_		H _b 2.66 (dd; J= 13.2; 11.7 Hz)
	5	37.5	H _a 3.14 (dd; J= 13.2; 4.8 Hz)
	5a	128.3	-
	6	125.0	7.29 (d; <i>J</i> = 2.4 Hz)
	7	131.1	-
—I	8	128.0	7.25 (dd; <i>J</i> = 8.7; 2.4 Hz)
	9	121.3	6.86 (d; <i>J</i> = 8.7 Hz)
6'5' 4'CH	9a	146.0	-
4 CH ₃	1'	137.2	-
^{2'} CH ₃	2'	128.9	7.60 (s)
	3'	137.1	-
	4'	132.4	-
	5′	117.6	7.04 (d; <i>J</i> = 8.1 Hz)
	6'	129.7	7.59 (d; <i>J</i> = 8.1 Hz)
	-CH ₂ -I	11.1	3.66-3.51 (m)
	-CH ₃	19.1	2.16 (s)
	-CH ₃	19.9	2.18 (s)
	-NH	-	9.48 (s)

¹H NMR spectrum (300 MHz. DMSO-d₆) of compound 4c.

¹³C NMR spectrum (100 MHz. CDCl₃) of compound **4c**.

		¹³ C		¹ H
	2	-		-
				3.96 (br s)
	4	55.6		
			Hь	2.95 (t; <i>J</i> = 12.8 Hz)
	5	37.5	ь Н _а	3.26 (d; <i>J</i> = 9.6 Hz)
	5a	126.8		-
	6	129.1		7 26 (br s)
	8	125.4		7.20 (81 3)
	7	131.5		-
2'3'	9	124.9		6.94 (d; <i>J</i> = 6.0 Hz)
4'		149.5		
H 8a' 4a'	9a			-
8'	1'	179.0		
7' 6'	1 2'	120.9		-
	2	120.2		8.08 (br s)
	3	126.4		8.02-7.87 (m)
	5	128.8		
	4'	120.0		7.73 (d; J= 7.2 Hz)
	4a'	134.2		-
	6′	125.7		
	7'	128.1		7.66-7.43 (m)
	8'	121.0		
	8a'	130.4		-
	-CH ₂ -I	11.1		3.45 (d; <i>J</i> = 10 Hz)

 ^{13}C NMR spectrum (100 MHz. CDCl₃) of compound 4d.

	¹³ C	¹ H
2	-	-
4	56.5	4.15-4.01 (m)
-	27 E	H _b 2.68 (dd; J= 13.2; 10.2 Hz)
5	37.5	H _a 3.14 (dd; <i>J</i> = 13.2; 4.5 Hz)
5a	130.9 (d, <i>J</i> =7.8 Hz)	
6	115.8 (d, <i>J</i> = 22.4 Hz)	7.11 (dd; <i>J</i> = 9.3; 2.7 Hz)
7	159.0 (d <i>, J</i> =241.6 Hz)	
8	114.8 (d <i>, J</i> =22.5 Hz)	7.04 (dd; <i>J</i> = 8.4; 2.7 Hz)
9	125.0 (d <i>, J</i> =7.8 Hz)	6.89 (dd; <i>J</i> = 8.4; 5.4 Hz)
9a	-	-
1'	138.0	-
2', 6'	121.1	7.34 (d; <i>J</i> = 9.0 Hz)
3',5'	128.9	7.92 (d; <i>J</i> = 9.0 Hz)
4'	128.6	-
-CH ₂ -I	11.0	3.58 (d; <i>J</i> = 6.6 Hz)
-NH	-	9.76 (s)

¹H NMR spectrum (300 MHz. DMSO-d₆) of compound **4e**.

¹³C NMR spectrum (100 MHz. CDCl₃) of compound **4e**.

		¹³ C	¹ H			
	2	-	-			
	4	55.4	3.98 (br s)			
	_		<i>H_b</i> 2.90-2.70 (m)			
	5	37.5	H _a 3.23 (dd; J= 13.2; 4.2 Hz)			
	5a	126.9	-			
	6	115.9 (d <i>, J</i> =23.3 Hz)	7.06-6.96 (m)			
~1	8	114.8 (d; <i>J</i> =21.7 Hz)	7.11 (dd; <i>J</i> = 9.0; 2.7 Hz)			
1	7	159.1 (d; <i>J</i> = 241.6 Hz)	-			
2' 3' 4'	9	125.0 (d <i>, J</i> =8.6 Hz)	6.74 (br s)			
	9a	147.1	-			
8a' 4a'	1'	-	-			
8"	2'	126.1	8.12-8.00 (m)			
7' 0	5′	128.7	7.98-7.89 (m)			
	4'	119.8	7.81-7.71 (m)			
	4a'	134.4	-			
	3'	126.3				
	6'	125.7	7.62-7.46 (m)			
	7'	125.3				
	8'	121.0				
	8a'	-	-			
	-CH ₂ -I	11.0	3.56 (br s)			

¹H NMR spectrum (300 MHz. DMSO-d₆) of compound **4f**.

 ^{13}C NMR spectrum (100 MHz. CDCl₃) of compound 4f.

	¹³ C		¹ H
2	-		-
4	59.2		4.25-4.14 (m)
-	27.0	H_b	3.06 (dd; <i>J</i> = 13.6; 9.6 Hz)
5	37.9	H _a	3.36 (dd; <i>J</i> = 13.6; 4.4 Hz)
5a	-		-
6	127.5		7.84-7.80 (m)
7a	133.5		-
8	123.7		8.32-8.24 (m)
9	125.7		7.53-7.45 (m)
7	125.8		
10	123.6		7.60 (d; <i>J</i> = 8.4 Hz)
11	127.6		7.38 (d; <i>J</i> = 8.4 Hz)
11a	128.5		-
11b	147.2		-
1'	139.8		-
2', 6'	119.7		7.43 (d; <i>J</i> = 7.6 Hz)
3′, 5′	129.1		7.88 (d; <i>J</i> = 7.6 Hz)
4'	124.2		7.16 (t; <i>J</i> = 7.2 Hz)
-CH ₂ -I	11.3		3.57-3.46 (m)

¹³C NMR spectrum (100 MHz. CDCl₃) of compound **4g**.

	¹³ C		¹ H
2	178.0		-
4	60.2		4.26-4.24 (m)
5	38.9	H _b H _a	3.03 (dd; J=13.5, 9.9 Hz) 3.40 (dd; J=13.5, 4.5 Hz)
5a	129.5		-
6	128.7		7.44 (d; J= 8.1 Hz)
7	124.0		7.61 (d; J= 8.1 Hz)
7a	134.6		-
8, 9	126.4		7.50-7.47 (m)
10	128.5		7.87-7.84 (m)
11	125.0		8.20 (dd, J= 9.9, 5.4 Hz)
11a	126.6		-
11b	144.5		-
1′	141.5		-
2', 6'	122.2		8.16 (d; J= 8.7 Hz)
3', 5'	129.5		7.41 (d; J= 8.7 Hz)
4'	128.1		-
-CH ₂ -I	12.8	H _c H _d	3.63 (dd; J= 10.2, 5.7 Hz) 3.69 (dd; J= 18.3, 10.2 Hz)
-NH	-		8.98 (br)

¹H NMR spectrum (300 MHz. Acetone- d_6) of compound **4h**.

COSY spectrum of **4h** (Acetone- d_6)

HMQC spectrum of **4h** (Acetone- d_6)

NOESY 1D spectrum of **4h** (Acetone- d_6 , 300 MHz) irradiating the signal at δ 3.40.

¹³C NMR spectrum (75 MHz. Acetone- d_6) of compound **4h**.

	¹³ C	¹ H
2	-	-
4	58.7	4.29-4.16 (m)
5	37.8	 <i>H_b</i> 2.91 (dd; <i>J</i>=13.6; 10.0 Hz) <i>H_a</i> 3.28 (dd; <i>J</i>= 13.6; 4.8Hz)
5a	125.2	-
6	127.5	7.40 (d; <i>J</i> = 8.4 Hz)
7	125.6	7.58 (d; <i>J</i> = 8.4 Hz)
7a	133.0	-
8	123.6	7.50-7.43 (m)
9	125.4	
10	122.4	7.87-7.85 (m)
11a	128.0	-
11b	147.6	
11	127.8	8.10-8.06 (m)
2', 6'	121.4 (d <i>, J</i> =8.2 Hz)	
1'	137.4	
3', 5'	115.1 (d <i>, J</i> =21.5 Hz)	7.21 (t; <i>J</i> = 8.8 Hz)
4'	156.6 (d <i>, J</i> =238.9 Hz)	
-CH ₂ -I	13.4	3.64-3.61 (m)
-NH	-	9.84 (s)

¹H NMR spectrum (400 MHz. DMSO-d₆) of compound **4i**.

¹³C NMR spectrum (100 MHz. DMSO-d₆) of compound 4i.

	¹³ C	1H
2	-	-
4	58.8	4.20-4.10 (m)
		H _b 3.36 (dd; J= 13.6; 4.4 Hz)
5	38.0	H _a 3.05 (dd; J= 13.6; 9.6 Hz)
5a	124.9	
6	127.4	7.37 (d; <i>J</i> = 8.4 Hz)
7	125.8	7.57 (d; <i>J</i> = 8.4 Hz)
7a	-	-
8	123.4	7.49-7.43 (m)
9	125.6	()
10	124.3	7.83-7.79 (m)
11a	128.6	-
11b	133.5	-
11	127.5	8.25-8.19 (m)
2', 6'	114.2	6.95 (d; <i>J</i> = 8.4 Hz)
1'	133.1	
3′, 5′	121.6	7.77 (d; <i>J</i> = 8.4 Hz)
4'	156.1	-
-CH ₂ -I	11.3	3.51-3.47 (m)
-OCH₃	55.5	3.84 (s)

 ^1H NMR spectrum (400 MHz. CDCl₃) of compound 4j.

 ^{13}C NMR spectrum (100 MHz. CDCl_3) of compound 4j.

		¹³ C	¹ H
	2	-	-
	4	58.3	4.26-4.16 (m)
			H _b 3.28 (dd; <i>J</i> =13.6; 4.4 Hz)
	5	37.8	2 91 (dd: /= 13 6: 10 0 Hz)
	_	425.0	H_a 2.51 (44,5 15.6, 16.6 Hz)
	58	125.0	- 7 40 (d: /= 8 4 Hz)
	6	127.4	7.40 (u, J= 8.4 112)
	7	125.3	7.56 (d; <i>J</i> = 8.4 Hz)
	7a	133.0	-
	8	123.6	7.49-7.43 (m)
	9	125.5	
	10 2'	122.2	7.87-7.82 (m)
111	- 11a	128.1	_
.H ₃	11b	147.4	_
2	11	127.8	8.12 (d; <i>J</i> = 7.6 Hz)
3	1'	138 7	_
	- 3'	135.9	-
	U U	130.4	
	4'	130.4	-
	5′	117.4	7.76 (d; <i>J</i> = 8.4 Hz)
	6'	129.4	7.11 (d; <i>J</i> = 8.4 Hz)
	Ŭ		
	-CH ₂ -I	13.3	3.61 (d; <i>J</i> = 7.2 Hz)
	-CH ₃	18.8	2.20 (s)
	-CH ₃	19.7	2.23 (s)
	-NH	-	9.60 (s)

¹H NMR spectrum (400 MHz, DMSO- d_6) of compound **4k**.

¹³C NMR spectrum (100 MHz, DMSO- d_6) of compound **4k**.

	¹³ C		¹ H	
2	152.0		-	
4	57.9		4.92-4.81 (m)	
5	34.6	Ha H _b	2.94 (dd; <i>J</i> = 16.2; 2.1 Hz) 3.42 (dd; <i>J</i> =16.2, 7.0 Hz)	
5a	129.0			
6	124.8		7.23 (d; <i>J</i> =7.2 Hz)	
7	122.1		6.93 (td; <i>J</i> =7.5; 1.0 Hz)	
8	127.1		7.14 (t; <i>J</i> =8.1 Hz)	
9	114.7		7.74 (d, <i>J</i> =8.1 Hz)	
9a	143.0		-	
1'	139.3		-	
2', 6'	120.6		7.52 (dd; <i>J</i> =8.7, 0.9 Hz)	
3', 5'	128.4		7.34-7.26 (m)	
4'	122.7		7.07-7.00 (m)	
-CH ₂ -I	11.8	H _c H _d	3.54 (dd; <i>J</i> =10.2, 3.0 Hz) 3.48-3.32 (m)	
-NH	-		8.85 (s)	

¹H NMR spectrum (300 MHz, DMSO- d_6) of compound **5a**.

COSY spectrum of compound 5a (DMSO- d_6)

NOESY 1D spectrum of **5a** (Acetone- d_6 , 300 MHz) irradiating the signal at δ 2.94.

¹³C NMR spectrum (75 MHz, DMSO-d₆) of compound **5a**.
	¹³ C	¹ H
2	151.7	-
4	61.1	4.72-4.61 (m)
5	34.5	H_a 2.98 (d; J = 16.8 Hz) H_b 3.42-3.24 (m)
5ª 6 8	128.2 126.1 127.8	7 44 7 77 (m)
9 2', 6' 9a	114.8 120.2 140.4	-
1' 7	137.6 132.0	-
3', 5'	129.1	7.23-7.16 (m)
4'	124.0	7.11 (t; <i>J</i> = 8.0 Hz)
-CH ₂ -I	9.3	H_d 3.42-3.24 (m)
-NH	-	-

 1 H NMR spectrum (400 MHz, CDCl₃) of compound **5b**.

 13 C NMR spectrum (100 MHz, CDCl₃) of compound **5b**.

	¹³ C		¹ H
2	151.8		-
4	61.2		4.69 (br s)
5		H _a	2.99 (d; <i>J</i> =16.8 Hz)
	34.7	H_b	3.37 (dd; <i>J</i> = 16.8; 9.6 Hz)
5a	132.2 (d <i>, J</i> =8.5 Hz)		-
6	114.1 (d, <i>J</i> =23.2 Hz)		7.15-7.06 (m)
8 9 2', 6'	113.3 (d, <i>J</i> =24.0 Hz) 114.6 (d, <i>J</i> =8.5 Hz) 120.1		7.44-7.29 (m)
9a	-		-
1'	137.7		-
7	159.0 (d <i>, J</i> =240.8)		-
3', 5'	129.1		7.01-6.83 (m)
4'	123.9		
-CH ₂ -I	9.4	H _c	3.63-3.55 (m)
		H _d	3.33-3.23 (m)

 1 H NMR spectrum (400 MHz, CDCl₃) of compound **5c**.

¹³C NMR spectrum (100 MHz, CDCl₃) of compound **5**c