Supplementary Information

Synthesis of Phthalides utilizing one-pot intramolecular domino protocol

Nasima Yasmin^a and Jayanta K. Ray^{b,*}

a: Department of Chemistry, Aliah University, Kolkata 700016, India

b: Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India

A. General remarks

All reactions were carried out using oven-dried glassware. Commercial grade reagents were used without further purification. Solvents were dried and distilled following usual protocols prior to use. All yields refer to isolated yields after column purification. Column chromatography was carried out using Silica gel (60-120 mesh) purchased from Rankem, India. TLC was performed on aluminium-backed plates coated with Silica gel 60 with F254 indicator (Merck).

The ¹H NMR spectra were measured with Bruker-200 (200 MHz) or Bruker-400 (400 MHz) and ¹³C NMR spectra were measured with Bruker-200 (50 MHz) or Bruker-400 (100 MHz) using CDCl₃. Coupling constants in ¹H NMR are in Hz. EIMS (70 eV) spectra were taken using a VG Autospec mass spectrometer. Melting points were measured in Toshniwal (India) melting point apparatus.

General procedure for the synthesis of *o*-alkenylbenzoic acid (2):

To a solution of *o*-alkenylbenzaldehyde (1 mmol) in acetonitrile at 0 °C, NaH₂PO₄ (1 mmol) dissolved in 1 mL water was added. To it, H₂O₂ (1 mol%) was added. Then NaClO₂ (1.4 mmol) dissolved in minimum amount of water, was added drop wise and stirred for 1-2 h. Upon completion of the reaction, excess saturated aq Na₂CO₃ solution was added, washed with ether, aq solution was acidified with conc. HCl and then extracted with ether (3 X 25 mL). The combined organic layer was washed with brine, dried over Na₂SO₄ and then evaporated to give pure *o*-alkenylbenzoic acid.

General Procedure for the synthesis of 3-alkylidine phthalides (3a-f):

To a solution of *o*-alkenylbenzoic acid (1 mmol) in dry DCM (5 mL), *m*CPBA (1 mmol) and *p*-TsOH (1 mmol) was added and the mixture was stirred at rt for 5-6 h. Then the reaction mixture was quenched with saturated aq NaHCO₃ solution and extracted with DCM. The organic solvent was washed with aq NaHCO₃ and brine solution, and then dried over anhy Na₂SO₄. The solvent

was evaporated and then the product was purified by column chromatography using ethyl acetate/ petroleum ether as eluent.

General procedure for the synthesis of lactones (5):

To a solution of 3-(2-formyl-cycloalkenyl)-acrylic esters **4.1** or 3-(2-formyl cycloalkenyl)acrylonitriles **4.2** (1 mmol) in acetonitrile at 0 °C, NaH₂PO₄ (1 mmol) dissolved in 1 mL water was added. To it H₂O₂ (1 mol%) was added. Then NaClO₂ (1.4 mmol) dissolved in minimum amount of water, was added drop wise and stirred for 1-2 h. Upon completion of the reaction the mixture was diluted with EtOAc, washed with saturated aq NaHCO₃ and then brine, dried over Na₂SO₄ and then evaporated to give pure lactone.

Spectral and analytical data of 2a-f, 3a-f and 5a-k:

2-(2-Methoxycarbonylvinyl)-benzoic acid (**2a**):¹ White solid. M. P. 102-104 °C. ¹H NMR (CDCl₃, 200 MHz): $\delta = 3.80$ (s, 3H), 6.30 (d, J = 16.0 Hz, 1H), 7.44–7.51 (m, 3H), 8.07 (d, J = 7.4 Hz, 1H), 8.52 (d, J = 16.0 Hz, 1H), 8.98 (bs, 1H). ¹³C NMR (CDCl₃, 50 MHz): $\delta = 51.92$, 120.98, 128.22, 128.52, 129.53, 131.72, 133.31, 137.18, 144.05,

167.14, 171.84. *Elemental Anal.* Calcd for C₁₁H₁₀O₄: C, 64.07; H, 4.89. Found C, 63.85; H, 5.07.

2-(2-Ethoxycarbonyl-vinyl)-benzoic acid (**2b**):² White solid. ¹H NMR (CDCl₃, 200 MHz): $\delta = 1.41$ (t, J = 7.2 Hz, 3H), 4.36 (q, J = 7.2 Hz, 2H), 6.39 (d, J = 15.8 Hz, 1H), 8.63 (d, J = 15.8 Hz, 1H), 7.61–7.70 (m, 3H), 8.19 (m, 1H).

2-(2-tert-Butoxycarbonylvinyl)-benzoic acid (**2c**): Colourless liquid. ¹H NMR (CDCl₃, 200 MHz): $\delta = 1.52$ (s, 9H), 6.275 (d, J = 16.0 Hz, 1H), 7.33–7.69 (m, 3H), 8.06 (d, J = 7.8 Hz, 1H), 8.45 (d, J = 15.8 Hz, 1H), 9.41 (bs, 1H). ¹³C NMR (CDCl₃, 50 MHz): $\delta = 28.18$ (3C), 80.81, 123.19, 128.09, 128.59, 129.25, 131.64, 133.13, 137.31, 142.64, 166.08, 172.08. *Elemental Anal.* Calcd for $C_{14}H_{16}O_4$: C, 67.73; H, 6.50. Found C, 67.93; H, 6.59.

2-(2-Methoxycarbonylvinyl)-4-methylbenzoic acid (**2d**): Puffy white solid. M. P. 96 °C. ¹H NMR (CDCl₃, 200 MHz): δ = 2.42 (s, 3H), 3.77 (s, 3H), 6.31 (d, *J* = 16.0 Hz, 1H), 7.27 (dd, *J*₁ = 2.0 Hz, *J*₂ = 7.4 Hz, 1H), 7.40 (s, 1H), 8.01 (d, *J* = 8.0 Hz, 1H), 8.55 (d, *J*

= 16.0 Hz, 1H), 8.73 (bs, 1H). ¹³C NMR (CDCl₃, 50 MHz): δ = 14.05, 51.85, 120.71, 125.78, 128.91, 130.28, 131.92, 137.31, 144.09, 144.40, 167.21, 171.75. *Elemental Anal.* Calcd for C₁₂H₁₂O₄: C, 65.45; H, 5.49. Found C, 65.32; H, 5.61.

2-(2-Ethoxycarbonylvinyl)-4-methylbenzoic acid (**2e**): White solid. M. P. 74-76 °C. ¹H NMR (CDCl₃, 200 MHz): $\delta = 1.34$ (t, J = 7.2 Hz, 3H), 2.43 (s, 3H), 4.28 (q, J = 7.2 Hz, 2H), 6.31 (d, J = 16.0 Hz, 1H), 7.28 (dd, $J_1 = 2.4$ Hz, $J_2 = 7.6$ Hz, 1H), 7.41 (s, 1H), 8.01

(d, J = 7.8 Hz, 1H), 8.50 (bs, 1H), 8.55 (d, J = 16.0 Hz, 1H). ¹³C NMR (CDCl₃, 50 MHz): $\delta = 14.41$, 21.69, 60.76, 121.28, 125.86, 129.01, 130.32, 132.00, 137.52, 144.22 (2C), 166.88, 171.88. *Elemental Anal*. Calcd for C₁₃H₁₄O₄: C, 66.66; H, 6.02. Found C, 66.78; H, 6.20.

5-Fluoro-2-(2-methoxycarbonyl-vinyl)-benzoic acid (**2f**): White solid. M. P. 158-160 °C. ¹H NMR (CDCl₃⁺d₆-DMSO, 200 MHz): $\delta = 3.65$ (s, 3H), 4.62(bs), 6.03 (d, J = 15.8 Hz, 1H), 7.04–7.14 (m, 1H), 7.43–7.58 (m, 2H), 8.35 (d, J = 15.8 Hz, 1H), 8.91.¹³C NMR (CDCl₃⁺d₆-DMSO, 50 MHz): $\delta = 51.60$, 117.76 (d, J = 23 Hz), 118.11 (d, J = 21.5 Hz), 119.95, 129.57, 129.72,

132.22(d, J = 3.5 Hz), 132.71, 143.09, 166.92, 167.36. *Elemental Anal.* Calcd for C₁₁H₉FO₄ : C, 58.93; H, 4.05. Found C, 58.69; H, 4.21.

(3-Oxo-3*H*-isobenzofuran-1-ylidene)-acetic acid methyl ester (**3a**):³ White solid. M. P. 97–98 °C. *FTIR* (KBr, cm⁻¹): 2966, 2363, 1806, 1718, 1653, 1479, 1435, 1208, 1147, 1035, 973, 849, 776, 690. ¹H NMR (CDCl₃, 200 MHz): $\delta = 3.80$ (s, 3H), 6.11 (s, 1H), 7.67 (t, J = 7.4 Hz, 1H), 7.79 (t, J = 7.6 Hz, 1H), 7.93 (d, J = 7.6 Hz, 1H), 9.01 (d, J = 7.8 Hz, 1H). ¹³C NMR

 $(CDCl_3, 50 \text{ MHz}): \delta = 51.95, 101.93, 125.38, 126.52, 128.17, 132.56, 135.30, 136.05, 158.00, 165.65, 165.97.$ HRMS calcd for $C_{11}H_8O_4Na$ (MNa⁺) m/z = 227.0320, found m/z = 227.0320. *Elemental Anal.* Calcd for $C_{11}H_8O_4$: C, 64.71; H, 3.95. Found C, 64.57; H, 4.03.

(3-Oxo-3*H*-isobenzofuran-1-ylidene)-acetic acid ethyl ester (**3b**): White solid. M. P. 74 °C. ¹H NMR (CDCl₃, 200 MHz): $\delta = 1.36$ (t, J = 7.2 Hz, 3H), 4.30 (q, J = 7.2 Hz, 2H), 6.14 (s, 1H), 7.70 (t, J = 7.4 Hz, 1H), 7.82 (t, J = 7.6 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 9.05 (d, J = 7.8 Hz, 1H). ¹³C NMR (CDCl₃, 50 MHz): $\delta = 14.22$, 60.92, 102.45, 125.32, 126.52, 128.19, 132.46, 135.24,

136.11, 157.80, 165.52, 165.69. *Elemental Anal*. Calcd for C₁₂H₁₀O₄: C, 66.05; H, 4.62. Found C, 65.90; H, 4.79.

(3-Oxo-3*H*-isobenzofuran-1-ylidene)-acetic acid tert-butyl ester (**3c**): White solid. M. P. 70 °C. ¹H NMR (CDCl₃, 200 MHz): $\delta = 1.56$ (s, 9H), 6.09 (s, 1H), 7.68 (t, J = 7.2 Hz, 1H), 7.82 t, J = 7.4 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 9.03 (d, J = 7.8 Hz, 1H). ¹³C NMR (CDCl₃, 50 MHz): $\delta = 28.33$ (3C), 81.69, 104.72, 125.40, 126.66, 128.35, 132.38, 135.32, 136.43, 157.19, 165.02,

166.12. Elemental Anal. Calcd for C₁₄H₁₄O₄: C, 68.28; H, 5.73. Found C, 68.10; H, 5.91.

(6-Methyl-3-oxo-3*H*-isobenzofuran-1-ylidene)-acetic acid methyl ester (**3d**): White solid. M. P. 122-124 °C. ¹H NMR (CDCl₃, 200 MHz): δ = 2.54 (s, 3H), 3.80 (s, 3H), 6.08 (s, 1H), 7.47 (d, *J* = 7.8 Hz, 1H), 7.80 (d, *J* = 7.8 Hz, 1H), 8.81 (s, 1H). ¹³C NMR (CDCl₃, 50 MHz): δ = 22.41, 51.90, 101.56, 124.05, 125.17, 128.35, 133.63, 136.44, 146.81, 158.23,

165.63, 166.11. *Elemental Anal.* Calcd for C₁₂H₁₀O₄: C, 66.05; H, 4.62. Found C, 66.13; H, 4.87.

(6-Methyl-3-oxo-3*H*-isobenzofuran-1-ylidene)-acetic acid ethyl ester (**3e**): White solid. M. P. 74-76 °C. ¹H NMR (CDCl₃, 200 MHz): δ = 1.30 (t, *J* = 7.2 Hz, 3H), 2.53 (s, 3H), 2.26 (q, *J* = 7.2 Hz, 3H), 2.53 (s, 2H), 6.08 (s, 1H), 7.23 (d, *J* = 0.6 Hz, 1H), 4.47 (d, *J* = 7.8 Hz, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 8.82 (s, 1H). ¹³C NMR (CDCl₃, 50

MHz): $\delta = 14.24$, 22.68, 60.87, 102.12, 124.07, 125.14, 128.37, 133.55, 146.73, 158.02, 165.66, 166.10. *Elemental Anal.* Calcd for C₁₃H₁₂O₄: C, 67.23; H, 5.21. Found C, 67.10; H, 5.37.

(5-Fluoro-3-oxo-3*H*-isobenzofuran-1-ylidene)-acetic acid methyl ester (**3f**): White solid. M. P. 80-82 °C. ¹H NMR (CDCl₃, 200 MHz): δ = 3.81 (s, 3H), 6.11 (s, 1H), 7.52–7.61 (m, 2H), 9.08 (dd, J_1 = 4.8 Hz, J_2 = 8.6 Hz, 1H). ¹³C NMR (CDCl₃, 50 MHz): δ = 51.99, 101.82, 111.79, 112.43, 119.11, 122.80, 124.44, 130.81, 156.79, 165.40, 165.88. *Elemental Anal*. Calcd for C₁₁H₇FO₄: C, 59.47; H, 3.18. Found C, 59.58; H, 3.33.

(3-Oxo-1,3,4,5-tetrahydronaphtho[1,2-*c*]furan-1-yl)-acetic acid methyl ester (**5a**): Colourless crystalline solid. M. P. 130-132°C. *FTIR* (KBr, cm⁻¹): 2942, 1749, 1733, 1650, 1439, 1368, 1318, 1167, 1063, 1011, 766, 613.¹H NMR (CDCl₃, 200 MHz): δ = 2.25–2.66 (m, 3H), 2.86–3.05 (m, 3H), 3.65 (s, 3H), 5.67–5.73 (m, 1H), 7.07–7.31 (m, 4H). ¹³C NMR (CDCl₃, 50 MHz): δ =

18.16, 27.85, 38.71, 52.23, 76.37, 123.90, 125.96, 127.15, 127.32, 128.92, 131.05, 137.81, 157.73, 169.79, 171.89. HRMS calcd for $C_{15}H_{15}O_4$ (MH⁺) m/z = 259.0970, found m/z = 259.0967. *Elemental Anal*. Calcd for $C_{15}H_{14}O_4$: C, 69.76; H, 5.46. Found C, 69.62; H, 5.33.

(3-Oxo-1,3,4,5-tetrahydronaphtho[1,2-*c*]furan-1-yl)-acetic acid ethyl ester (**5b**): White solid. M. P. 83–85 °C. ¹H NMR (CDCl₃, 200 MHz): $\delta = 1.22$ (t, *J* = 7.2 Hz, 3H), 2.37–2.70 (m, 3H), 2.89–3.04 (m, 3H), 4.15 (q, *J* = 7.2 Hz, 2H), 5.70–5.77 (m, 1H), 7.09–7.35 (m, 4H). ¹³C NMR (CDCl₃, 50 MHz): $\delta = 14.22$, 18.29, 27.99, 39.07, 61.43, 76.60, 124.02, 126.12, 127.25, 127.49, 129.03, 131.14, 137.93, 157.90, 169.47, 172.11. *Elemental Anal*. Calcd for C₁₆H₁₆O₄: C, 70.57; H, 5.92. Found C, 70.79; H, 6.05.

(3-Oxo-1,3,4,5-tetrahydronaphtho[1,2-*c*]furan-1-yl)-acetic acid tert-butyl ester (**5c**): Colourless viscous liquid. ¹H NMR (CDCl₃, 200 MHz): δ = 1.47 (s, 9H), 2.42–2.75 (m, 3H), 2.92–3.02 (m, 3H), 5.70–5.77 (m, 1H), 7.14–7.35 (m, 4H). ¹³C NMR (CDCl₃, 50 MHz): δ = 18.23, 28.05 (3C), 29.70, 40.09, 76.82, 81.95, 124.03, 126.01, 127.15, 127.52, 128.91,

130.97, 137.83, 157.93, 168.57, 172.19. *Elemental Anal*. Calcd for C₁₈H₂₀O₄: C, 71.98; H, 6.71. Found C, 71.83; H, 6.82.

(5-Methyl-3-oxo-1,3,4,5-tetrahydronaphtho[1,2-*c*]furan-1-yl)-acetic acid methyl ester (**5d**): Yellow solid. M. P. 78 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 1.32$ -1.39 (m, 3H), 2.45-2.73 (m, 3H), 2.95-3.19 (m, 2H), 3.77 (s, 3H), 5.73-5.78 (m, 1H), 7.11-7.40 (m, 4H). ¹³C NMR (CDCl₃, 50 MHz): $\delta = 22.67, 25.59, 33.18, 38.86, 52.52, 76.47, 124.12, 124.32, 126.11, 127.34, 128.86, 131.61, 143.93, 156.92, 169.94, 172.70.$ *Elemental Anal.*Calcd for

C₁₆H₁₆O₄: C, 70.57; H, 5.92. Found C, 70.43; H, 6.02.

(6-Methoxy-3-oxo-1,3,4,5-tetrahydronaphtho[1,2-*c*]furan-1-yl)-acetic acid methyl ester (**5e**): White crystalline solid. M. P. 138 °C. ¹H NMR (CDCl₃, 200 MHz): δ = 2.21 2.67 (m, 4H), 2.96 (dd, J_1 = 2.6 Hz, J_2 = 16.4 Hz, 1H), 3.17–3.28 (m, 1H), 3.66 (s, 1H), 3.77 (s, 1H), 5.65–5.71 (m, 1H), 6.69 (d, J = 7.4 Hz, 1H), 6.88 (d, J = 8.2 Hz, 1H), 7.09–7.20 (m, 1H). ¹³C NMR (CDCl₃, 50 MHz): δ = 17.64, 20.21, 39.02, 52.38, 55.72, 76.73,

113.46, 116.35, 125.82, 126.18, 127.71, 128.28, 157.15, 157.75, 170.01, 172.19. *Elemental Anal.* Calcd for C₁₆H₁₆O₅: C, 66.66; H, 5.59. Found C, 66.71; H, 5.73.

(7-Methoxy-3-oxo-1,3,4,5-tetrahydronaphtho[1,2-*c*]furan-1-yl)acetic acid methyl ester (**5f**): Off-White solid. M. P. 130-132 °C. ¹H NMR (CDCl₃, 200 MHz): $\delta = 2.47-2.70$ (m, 3H), 2.90–3.06 (m, 3H), 3.77 (s, 3H), 3.81 (s, 3H), 5.71–5.76 (m, 1H), 6.74–6.83 (m, 2H), 7.09 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (CDCl₃, 50 MHz): δ

= 18.08, 28.42, 39.01, 52.34, 55.45, 76.30, 111.90, 115.15, 120.29, 123.13, 125.45, 140.25, 158.00, 161.78, 170.05, 172.34. *Elemental Anal.* Calcd for $C_{16}H_{16}O_5$: C, 66.66; H, 5.59. Found C, 66.79; H, 5.80.

(8-Methoxy-3-oxo-1,3,4,5-tetrahydronaphtho[1,2-*c*]furan-1-yl)-acetic acid methyl ester (**5g**): Off-white solid. M. P. 131-133 °C. ¹H NMR (CDCl₃, 200 MHz): $\delta = 2.35 - 2.75$ (m, 3H), 2.83–3.05 (m, 3H), 3.72 (s, 3H), 3.78 (s, 1H), 5.71–5.76 (m, 1H), 6.65 (d, J = 1.8 Hz, 1H), 6.86 (dd, $J_1 = 2.0$ Hz, $J_2 = 8.2$ Hz, 1H), 7.19 (d, J = 8.4 Hz, 1H). ¹³C

NMR (CDCl₃, 50 MHz): δ = 18.53, 17.04, 38.79, 52.32, 55.56, 76.39, 110.37, 115.30, 126.73, 128.22, 129.70, 157.66, 158.59, 169.83, 171.89. *Elemental Anal*. Calcd for C₁₆H₁₆O₅: C, 66.66; H, 5.59. Found C, 66.50; H, 5.73.

(8-Methoxy-3-oxo-1,3,4,5-tetrahydronaphtho[1,2-c]furan-1-yl)acetic acid ethyl ester (**5h**): Yellow solid. M. P. 72-74 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 1.27$ (t, J = 7.2 Hz, 3H), 2.38–2.48 (m, 1H), 2.53–2.59 (m, 1H), 2.63–2.70 (m, 1H), 2.87-2.92 (m, 2H), 2.99 (dd, $J_1 = 1.4$ Hz, $J_2 = 8.2$ Hz, 1H), 3.81 (s, 3H), 4.20

(q, J = 7.2 Hz, 2H), 5.75 (dd, $J_1 = 2.8$ Hz, $J_2 = 6.4$ Hz, 1H), 6.69 (s, 1H), 6.88 (dd, , $J_1 = 2.4$ Hz, $J_2 = 8.0$ Hz, 1H), 7.21 (d, J = 8.0 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 14.06$, 18.46, 26.99, 38.91, 55.49, 61.29, 76.36, 110.39, 115.19, 126.64, 128.21, 129.60, 129.63, 157.65, 158.53, 169.29, 171.88. *Elemental Anal*. Calcd for C₁₇H₁₈O₅: C, 67.54; H, 6.00. Found C, 67.43; H, 6.19.

(3-Oxo-1,3,4,5-tetrahydronaphtho[1,2-c]furan-1-yl)-acetonitrile (**5i**): Yellow solid. M. P. 150 °C. *FTIR* (KBr, cm⁻¹): 2925, 2254, 1745, 1657, 1395, 1308, 1064, 1049, 1010, 780. ¹H NMR (CDCl₃, 200 MHz): δ = 2.43–2.58 (m, 1H), 2.67–3.07 (m, 4H), 3.25 (dd, *J*₁ = 3.2 Hz, *J*₂ = 17.2 Hz, 1H), 5.56 (m, 1H), 7.13 (d, *J* = 7.4 Hz, 1H), 7.26–7.43 (m, 3H). ¹³C NMR (CDCl₃, 50 MHz): δ =

18.27, 23.27, 27.80, 74.13, 114.65, 123.70, 126.73, 127.37 (2C), 129.21, 131.59, 138.07, 156.19, 171.01. *Elemental Anal.* Calcd for C₁₄H₁₁NO₂: C, 74.65; H, 4.92; N, 6.22. Found C, 74.77; H, 5.03; N, 6.10.

(7-Methoxy-3-oxo-1,3,4,5-tetrahydronaphtho[1,2-c]furan-1-yl)acetonitrile (**5j**): Yellow solid. M. P. 106-108 °C. ¹H NMR (CDCl₃, 200 MHz): $\delta = 2.64-2.74$ (m, 1H), 2.75–3.03 (m, 4H), 3.16 (dd, $J_1 =$ 4.2 Hz, $J_2 = 17.2$ Hz, 1H), 3.82 (s, 3H), 5.44 (m, 1H), 6.77 (dd, $J_1 =$ 2.2 Hz, $J_2 = 8.4$ Hz, 1H), 6.84 (d, J = 2.2 Hz, 1H), 2.02 (d, J = 8.4

Hz, 1H). ¹³C NMR (CDCl₃, 50 MHz): δ = 18.20, 23.45, 28.38, 55.33, 73.86, 112.11, 114.48, 115.45, 119.69, 124.54, 125.12, 140.53, 156.10, 162.20, 171.04. *Elemental Anal.* Calcd for C₁₅H₁₃NO₃: C, 70.58; H, 5.13; N, 5.49. Found C, 70.39; H, 5.31; N, 5.32.

(8-Methoxy-3-oxo-1,3,4,5-tetrahydronaphtho[1,2-c]furan-1-yl)acetonitrile (**5k**): White solid. M. P. 174-176 °C. ¹H NMR (CDCl₃, 200 MHz): $\delta = 2.41-2.56$ (m, 1H), 2.63-2.96 (m, 4H), 3.21 (dd, $J_1 =$ 4.0 Hz, $J_2 = 17.0$ Hz, 1H), 3.83 (s, 3H), 5.53 (m, 1H), 6.65 (d, J =1.8 Hz, 1H), 6.92 (dd, $J_1 = 1.8$ Hz, $J_2 = 7.8$ Hz, 1H), 7.25 (d, J = 7.8

Hz, 1H). ¹³C NMR (CDCl₃, 50 MHz): $\delta = 18.60, 23.26, 26.93, 55.64, 74.05, 110.33, 114.48, 115.66, 127.55, 128.12, 129.89, 129.99, 155.99, 158.68, 170.83.$ *Elemental Anal.*Calcd for C₁₅H₁₃NO₃: C, 70.58; H, 5.13; N, 5.49. Found C, 70.71; H, 5.25; N, 5.39.

References:

- 1. H. Fernholz, Chem. Ber., 1951, 84, 110.
- 2. E. Artuso, M. Barbero, I. Degani, S. Dughera, R. Fochi, Tetrahedron, 2006, 62, 3146.
- 3. M. M. Kayser, K. L. Hatt, D. L. Hooper, Can. J. Chem., 1992, 70, 1985.

<u>Spectra</u>

 ^1H NMR (CDCl_3, 200 MHz) and ^{13}C NMR (CDCl_3, 50 MHz) of 2c

^1H NMR (CDCl_3, 200 MHz) and ^{13}C NMR (CDCl_3, 50 MHz) of 2d

¹H NMR (CDCl₃ +d₆-DMSO, 200 MHz) and ¹³C NMR (CDCl₃ +d₆-DMSO, 50 MHz) of **2f**

¹H NMR (CDCl₃, 200 MHz) and ¹³C NMR (CDCl₃, 50 MHz) of **3a**

¹H NMR (CDCl₃, 200 MHz) and ¹³C NMR (CDCl₃, 50 MHz) of **3b**

 ^1H NMR (CDCl_3, 200 MHz) and ^{13}C NMR (CDCl_3, 50 MHz) of 3c

^1H NMR (CDCl_3, 200 MHz) and ^{13}C NMR (CDCl_3, 50 MHz) of 3e

^1H NMR (CDCl_3, 200 MHz) and ^{13}C NMR (CDCl_3, 50 MHz) of 3f

^1H NMR (CDCl_3, 200 MHz) and ^{13}C NMR (CDCl_3, 50 MHz) of 5a

^1H NMR (CDCl_3, 200 MHz) and ^{13}C NMR (CDCl_3, 50 MHz) of 5c

^1H NMR (CDCl_3, 200 MHz) and ^{13}C NMR (CDCl_3, 50 MHz) of 5d

 ^1H NMR (CDCl_3, 200 MHz) and ^{13}C NMR (CDCl_3, 50 MHz) of 5e

^1H NMR (CDCl_3, 200 MHz) and ^{13}C NMR (CDCl_3, 50 MHz) of $\mathbf{5f}$

^1H NMR (CDCl_3, 200 MHz) and ^{13}C NMR (CDCl_3, 50 MHz) of 5i

^1H NMR (CDCl_3, 200 MHz) and ^{13}C NMR (CDCl_3, 50 MHz) of 5j

