Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Developmental and Cartilaginous Effects of Protein-coated SiO₂ Nanoparticles Corona Complex in Zebrafish Larvae

Ya-Ping Wang, a,b,¶ Xiang Li,a,¶ Ji-Yang Xue, a,b Yao-Shu Zhang,b,* Xi-Zeng Feng a,b,*

^a State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China. Fax/Tel: +86 22 23507022, E-mail: xzfeng@nankai.edu.cn

b Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, and Research Center of Pharmaceutical Sciences, Tianjin Medical University, Tianjin 300070, China. E-mail: zhangyaoshu@tijmu.edu.cn

¶ These authors contributed equally to this work.

*Contact: Xi-Zeng Feng, Fax/Tel: +86 22 23507022, E-mail: xzfeng@nankai.edu.cn
Yao-Shu Zhang, E-mail: zhangyaoshu@tijmu.edu.cn

Table S1. Experimental program for the toxicity assessments.

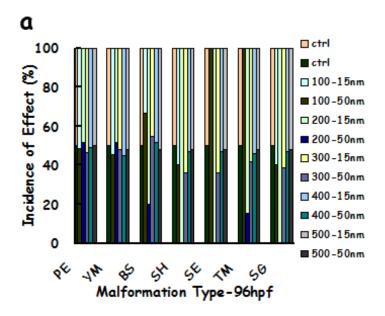

NP concentrations (μg/ml)	Exposure period	Toxicological endpoints	Results
0, 100, 200, 300, 400, 500	4-72 hpf	Hatch rate (48,54,72 hpf)	Figure. 1
0, 100, 200, 300, 400, 500	4-72 hpf	Mortality (54,72,120 hpf)	Figure. 2
0, 100, 200, 300, 400, 500	4-72 hpf	Malformations(96,120 hpf)	Figure. 3-5

Figure S1. An comprehensive view of the developmental conditions following exposure at 96 and 120 hpf.

malformation	96hpf		120hpf	
	15nm	50nm	15nm	50nm
Ctrl	500 _J m	500ym	500µm	500pm
	500 _{ym}	500 _{jm}	500µs	500ps
100 μg/mL	500 _{jm}	500 _{JM}	500 _{JP}	500pm
	500 _{pm}	500 _{jm}	500 _{jm}	500,0
200 μg/mL	500 _J m	500ym	500 _{jm}	500,6
	500 _{pm}	500 _{jm}	500ym	
300 μg/mL	500 _{jm}	500pm	500,0	5000
	500ym	500 _{jm}	500 _{jm}	500,0
400 μg/mL	500pm		100a	300m
		00a	200,00	500,=
500 μg/mL	<u></u>	<u> </u>	- Son	<u></u>
	Dead	Dead	Dead	Dead

Figure S2. The proportion of each malformation type for different diameters at the same concentration. The incidence of effects of different malformation types from exposure

to standard tank water (control) or 100, 200, 300, 400, or 500 μ g/mL SiO₂ NPs corona complex (in standard tank water).

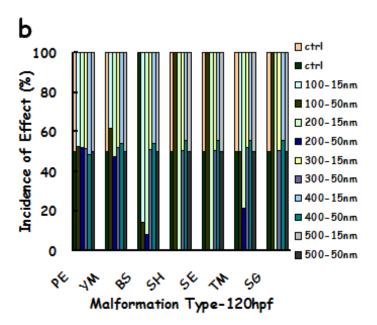


Figure S3. A comprehensive overview of the cartilaginous toxicity for the vertebral column development. Both 96 hpf and 120 hpf zebrafish exposed to different concentrations (200, 300 and 400 μg/mL) and different diameters (15 nm and 50 nm) of SiO₂ NPs corona

complex.

:	96hpf		120hpf	
spine	15nm	50nm	15nm	50nm
ctrl	9			
200 µg/mL		-		-
300 µg/mL				9
400 μg/mL				
			8	