Supporting Information

Enzyme-catalyzed Quantitative Chain-end Functionalization of Poly(ethylene

glycol)s under Solventless Conditions

Kwang Su Seo¹, Marcela Castano^{2,} Madalis Casiano³, Chrys Wesdemiotis^{2,3}, Matthew L. Becker², Judit E. Puskas^{1,2,3,*}

¹Department of Chemical and Biomolecular Engineering, ²Department of Polymer Science and ³Department of Chemistry, The University of Akron, Akron, Ohio 44325

jpuskas@uakron.edu

Figure S1. MALDI-ToF mass spectrum of the reaction product at DVA/TEG = 6 after 1 hour reaction time (cationizing salt: NaTFA). [DVA] = 4.61 mol/L, [TEG] = 0.77 mol/L, [CALB] = 7.6×10^{-5} mol/L.

Figure S2. ¹H NMR spectra of HO-TEG-OH (top) and V-TEG-V (bottom) (solvent: DMSO-d₆). [DVA] = 4.61 mol/L, [TEG] = 0.77 mol/L, [CALB] = 7.6×10^{-5} mol/L.

¹H NMR: (**a**) 4.55 ppm; (**b**) 3.50 ppm; (**b**') 4.22ppm; (**c**) 3.46 ppm; (**c**') 3.60 ppm; (**d**) 3.50 ppm; (**e**) 4.87 ppm; (**e**') 4.65 ppm; (**f**) 7.24 ppm; (**g**) 2.45 ppm; (**h**) 1.62 ppm; (**i**) 2.32 ppm.

Figure S3. ¹³C NMR spectrum of telechelic vinyl-functionalized TEG (solvent: DMSO-d₆).

¹³C NMR: (**B**) 63.09 ppm; (**C**) 68.34 ppm; (**D**) 69.81 ppm; (**E**) 97.76 ppm; (**F**) 141.17 ppm; (**G**)
170.15 ppm; (**H**) 33.02 ppm; (**I**) 23.76/23.45 ppm; (**J**) 32.67 ppm; (**K**) 172.60 ppm.

Figure S4. MALDI-ToF mass spectrum of the product at DVA/MeO-PEG-OH₁₁₀₀ = 5. [DVA] = 5.30 mol/L, [MeO-PEG-OH₁₁₀₀] = 1.06 mol/L; [CALB] = $6.9 \times 10^{-4} \text{ mol/L}$.

Figure S5. NMR spectra of the product of the reaction of DVA (5.0 eq.) with MeO-PEG-OH₁₁₀₀: (top) ¹H NMR spectrum and (bottom) ¹³C NMR spectrum (solvent: DMSO-d₆). [DVA] = 5.30 mol/L, [MeO-PEG-OH₁₁₀₀] = 1.06 mol/L; [CALB] = 6.9×10^{-4} mol/L.

¹H NMR: (b) 4.14 ppm; (c) 3.60 ppm; (d) 3.50 ppm; (e) 3.45 ppm; (f) 3.37 ppm; (g) 3.22 ppm;
(h) 2.32 ppm; (i) 1.56 ppm; (j) 2.44 ppm; (k) 7.18 ppm (l) 4.64 ppm, (l') 4.85 ppm.

¹³C NMR: (**A**) 63.12 ppm; (**B**) 68.04 ppm; (**C**) 70.01 ppm; (**D**) 67.00 ppm; (**E**) 71.79 ppm; (**F**)

57.98 ppm; (G) 73.11 ppm; (H) 23.86 ppm; (I) 33.00 ppm; (J) 23.83 ppm; (K) 170.06 ppm; (L)

141.51 ppm (**M**) 98.08 ppm.

Figure S6. MALDI-ToF mass spectrum of the product of the reaction of DVA/ HO-PEG-OH₁₀₀₀ at t = 2 hours. [DVA] = 5.31 mol/L, [HO-PEG-OH₁₀₀₀] = 0.27 mol/L; [CALB] = 1.6×10^{-4} mol/L.

The representative peak at m/z 1362.0 in the major distribution corresponds to the sodium complex of the 23-mer of telechelic vinyl-functionalized HO-PEG-OH₁₀₀₀. The calculated monoisotopic mass for this peak [$m/z = 23 \times 44.03$ (C₂H₄O repeat unit) + 326.14 (C₁₆H₂₂O₇ end groups) + 22.99 (Na⁺)] is 1361.82 Da.