PhIO promoted synthesis of nitrile imines and nitrile oxides within micellar core in aqueous media: A regiocontrolled approach to synthesize densely functionalized pyrazole and isoxazoline derivatives

Gargi Pal, Sanjay Paul, Partha Pratim Ghosh, Asish R. Das*

[§]Department of Chemistry, University of Calcutta, Kolkata-700009, India *Corresponding author. Tel.: +913323501014, +919433120265; fax: +913323519754;

E-mail address: ardchem@caluniv.ac.in, ardas66@rediffmail.com (A R Das)

Content

Page Numbers

1.	Materials and Method	2
2.	General Procedure for the synthesis of pyrazoles and isoxazolines	3-18
	and Physical Characterization data of the synthesized compounds	
3.	¹ HNMR, ¹³ CNMR Spectra of the	19-50

1. Materials and Methods

¹H-NMR and ¹³C-NMR spectral analysis were carried out on Bruker-Advance Digital 300 MHz and 75 MHz instruments where tetramethylsilane (TMS) was used as internal standard. Infrared spectra were recorded in KBr pallets in reflection mode on a Perkin Elmer RX-1 FTIR spectrophotometer. High Resolution Mass Spectra was obtained using a QTOFMICRO YA263 mass spectrometer. Suitable single crystals of compound **5a** and **6f** were mounted on a Bruker-AXS SMART APEX II diffractometer equipped with a graphite monochromator. Optical images were obtained using a CARL-ZEISS Axi-Observer optical microscope. DLS study was performed in a MALVERN Zetasizer DLS.All the reactions were monitored by thin layer chromatography carried out on Merck aluminum-blocked silica gel plates coated with silica gel G under UV light and also by exposure to iodine vapor for detection. Melting points were determined on a Köfler Block apparatus and are uncorrected. Synthetic grade chemicals from Sigma-Aldrich, Spectrochem and E-Merck were used for carrying out the organic reactions. For column chromatography Spectrochem 100-200 mesh silica gel was used.

General Procedure for the synthesis of pyrazoles:

A mixture of aldehyde (1mmol), phenyl hydrazine (1 mmol) and olefin derivatives (1mmol) were added to a well stirred solution of SDS (10 mol %) in 5 ml H₂O at room temperature. Then PhIO (2.5 mmol) was added portion wise to the resulting mixture carefully maintaining the temperature at 0 °C. When the addition was complete, the reaction was allowed to attain room temperature and stirring was continued for the required period of time (monitored by TLC). After completion of the reaction, the mixture was extracted with ethyl acetate (3x10ml). Removal of ethyl acetate under reduced pressure and purification of the crude product by column chromatography (silica gel 100-200 mesh, ethyl acetate-hexane as eluent) provided pure products. All compounds were well characterized by ¹H, ¹³C NMR, FT-IR and HRMS analysis.

3-(4-Methoxy-phenyl)-1-phenyl-1*H*-pyrazole-4-carboxylic acid methyl ester (4a)

Yield: 85%, (0.261 g); M.p. 91-92 0 C (Lit: 94-95 0 C); Characteristics: White crystalline solid; ¹H NMR (300 MHz, CDCl₃): δ 7.99 (s, 1H), 7.68 (d, 3H, *J*=8.7 Hz), 7.59-7.54(m, 2H), 7.43 (d, 2H, *J*=8.1 Hz), 7.01-6.98 (m, 2H), 3.89 (s, 3H), 3.83 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 162.3, 160.3, 144.2, 136.4, 129.3, 127.2, 127.1, 121.0, 114.4, 113.3, 55.3, 51.3; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₈H₁₇N₂O₃: 309.1239, found: 309.1236 ; IR (KBr) cm⁻¹: 1133.2, 1240.2, 1500.1, 1598.9, 1730.6, 2967.3, 3024.5; Anal. Calcd for C₁₈H₁₆N₂O₃: C: 70.12; H: 5.23; N: 9.09%, found: C: 70.10; H: 5.21; N: 9.07%. 1-Phenyl-3-m-tolyl-1H-pyrazole-4-carboxylic acid methyl ester (4b)

Yield: 88%, (0.257 g); M.p. 99-100 °C; Characteristics: White amorphous solid;

¹H NMR (300 MHz, CDCl₃): δ 7.65 (s, 1H), 7.58 (d, 1H, *J*=7.5 Hz), 7.47-7.05 (m, 8H), 3.74(s, 3H), 3.33 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 159.8, 151.7, 140.0, 138.5, 134.0, 132.1, 129.2, 128.6, 126.4, 126.1, 123.1, 118.0, 109.6, 52.1, 21.4; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₈H₁₇N₂O₂: 293.1290, found: 293.1288; IR (KBr) cm⁻¹: 1177.0, 1236.2, 1516.3, 1601.3, 1732.3, 2933.2; Anal. Calcd for C₁₈H₁₇N₂O₂: C: 73.95; H: 5.52; N: 9.58%, found: C: 73.91; H: 5.49; N: 9.54%.

Methyl 3-(4-fluorophenyl)-1-phenyl-1H-pyrazole-4-carboxylate (4c)

Yield: 91%, (0.269 g); M.p. 128-129 0 C (Lit: 130-131 0 C); Characteristics: White crystalline solid; ¹H NMR (300 MHz, CDCl₃): δ 7.80-7.75 (m, 2H), 7.41 (s, 5H), 7.22 (s, 1H), 7.07-7.02 (m, 2H), 3.75 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 164.6, 161.3 (C-F), 159.5, 150.7, 140.2, 134.4, 128.8, 128.4, 127.7, 127.3, 126.1, 115.9, 115.5, 109.3, 52.1; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₇H₁₄FN₂O₂: 297.1039, found: 297.1036; IR (KBr) cm⁻¹: 1158.9, 1232.4, 1439.7, 1500.4, 1738.6, 2957.5, 3064.5 ; Anal. Calcd for C₁₇H₁₃FN₂O₂: C: 68.91; H: 4.42; N: 9.45%, found: C: 68.90; H: 4.43; N: 9.44%

3-(3-Nitro-phenyl)-1-phenyl-1*H*-pyrazole-4-carboxylic acid methyl ester (4d)

Yield: 89%, (0.287 g); M.p. 120-121 °C; Characteristics: Yellow crystalline solid;

¹H NMR (300 MHz, CDCl₃): δ 8.62(s, 1H), 8.15-8.05(m, 2H), 7.78 (d, 1H, *J*=8.4 Hz), 7.55-7.41(m, 4H), 7.33 (s, 1H), 7.24 (t, 1H, *J*=8Hz), 3.76 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 164.1, 149.2, 142.8, 139.1, 135.1, 131.1, 129.8, 129.5, 128.6, 128.2, 126.1, 123.7, 123.1, 120.7, 113.5, 109.7, 52.3; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₇H₁₄N₃O₄: 324.0984, found: 324.0980; IR (KBr) cm⁻¹: 1089.7, 1248.8, 1347.1, 1525.1, 1601.8, 1736.9, 2955.3, 3285.9 ; Anal. Calcd for C₁₇H₁₃N₃O₄: C: 63.16; H: 4.05; N: 13.00%, found: C: 63.11; H: 4.01; N: 13.01%

3-Furan-2-yl-1-phenyl-1*H*-pyrazole-4-carboxylic acid methyl ester (4e)

Yield: 87%, (0.233 g); M.p. 88-89 °C; Characteristics: Yellow amorphous solid;

¹H NMR (300 MHz, CDCl₃): δ 7.44-7.37(m, 6H), 7.22 (s, 1H), 6.71(s, 1H), 6.42(s, 1H), 3.74(s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 159.3, 152.4, 143.6, 142.4, 129.3, 128.6, 126.1, 121.5, 113.6, 111.8, 111.5, 110.1, 109.2, 106.8, 52.1; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₅H₁₃N₂O₃: 269.0926, found:269.0923; IR (KBr) cm⁻¹: 1108.7, 1242.1, 1504.4, 1733.1, 2904.2, 3010.2; Anal. Calcd for C₁₅H₁₂N₂O₃: C: 67.16; H: 4.51; N: 10.44%, found: C: 67.15; H: 4.50; N: 10.46%

1-Phenyl-3-thiophen-2-yl-1H-pyrazole-4-carboxylic acid methyl ester (4f)

Yield: 86%, (0.244 g); M.p. 101-102 0 C (Lit: 102-103 0 C); Characteristics: Yellow amorphous solid; ¹H NMR (300 MHz, CDCl₃): δ 7.70-7.60 (m, 2H), 7.41-7.33(m, 3H), 7.27-7.11 (m, 2H), 7.04 -6.98 (m, 2H), 3.73 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 159.4, 147.1, 140.0, 137.5, 135.2, 134.2, 130.2, 128.6, 127.6, 127.5, 126.1, 125.4, 124.7, 109.4, 52.1; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₅H₁₃N₂O₂S: 285.0698, found: 285.0696; IR (KBr) cm⁻¹: 1015.4, 1241.8, 1500.6, 1732.8, 2911.3, 3001.6 ; Anal. Calcd for C₁₅H₁₂N₂O₂S: C: 63.36; H: 4.25; N: 9.85%, found: C: 63.39; H: 4.28; N: 9.86%

3-Isopropyl-1-phenyl-1*H*-pyrazole-4-carboxylic acid ethyl ester (4g)

Yield: 91%, (0.235 g); Characteristics: Yellow oil;

¹H NMR (300 MHz, CDCl₃): δ 7.63 (s, 1H), 7.36-7.34 (m, 5H), 4.15 (q, 2H, *J*=7.2 Hz), 3.02-2.97(m, 1H), 1.26 (d, 6H, *J*=5.4 Hz), 1.21(t, 3H, *J*=7.2 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 163.3, 159.4, 136.5, 130.9, 130.0, 128.8, 126.1, 115.4, 109.3, 61.0, 26.6, 23.1, 14.0; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₅H₁₉N₂O₂: 259.1447, found: 259.1444; IR (KBr) cm⁻¹: 1242.1, 1357.3, 1502.1, 1578.1, 1601.1, 1736.1, 2922...9; Anal. Calcd for C₁₅H₁₈N₂O₂: C: 69.74; H: 7.02; N: 10.84%, found: C: 69.71; H: 7.01; N: 10.83%

1-(4-Nitro-phenyl)-3-phenyl-1*H*-pyrazole-4-carboxylic acid ethyl ester (4h)

Yield: 92%, (0.310 g); M.p. 115-116 °C (Lit118 °C); Characteristics: Yellow crystalline solid;

¹H NMR (300 MHz, CDCl₃): δ 8.28 (d, 2H, *J*=8.7 Hz), 7.80 (d, 2H, *J*=8.7 Hz), 7.66 (d, 2H, *J*=8.7 Hz), 7.40-7.29 (m, 4H), 4.26 (q, 2H, *J*=7.1), 1.27 (t, 3H, *J*=7.2); ¹³C NMR (75 MHz, CDCl₃): δ

158.9, 152.8, 147.2, 145.0, 134.9, 131.5, 128.9, 126.5, 125.9, 124.0, 123.9, 111.0, 67.7, 14.1; HRMS (ESI-TOF) m/z: $[M+H]^+$ Calculated for $C_{18}H_{16}N_3O_4$: 338.1141, found: 338.1140 ; IR (KBr) cm⁻¹: 1110, 1241.7, 1306.8, 1526.4, 1597.9, 1721.7, 2937.8, 3132.8; Anal. Calcd for $C_{18}H_{15}N_3O_4$: C: 64.09; H: 4.48; N: 12.46%, found: C: 64.09; H: 4.46; N: 12.42%

3-(4-Methoxy-phenyl)-1-(4-nitro-phenyl)-1*H*-pyrazole-4-carboxylic acid ethyl ester (4i)

Yield: 81%, (0.297 g); M.p. 89-90 °C; Characteristics: Yellow crystalline solid;

¹H NMR (300 MHz, CDCl₃): δ 8.30 (d, 2H, *J*=9Hz), 7.75 (d, 1H, *J*=8.7 Hz), 7.67 (d, 2H, *J*=9 Hz), 7.27 (s, 1H), 6.98-6.91 (m, 3H), 4.27 (q, 2H, *J*=7.1), 3.81 (s, 3H), 1.29 (t, 3H, *J*=7.1); ¹³C NMR (75 MHz, CDCl₃): δ 163.3, 160.1, 153.6, 152.2, 140.8, 132.4, 132.1, 129.6, 128.0, 123.9, 122.0, 116.5, 115.6, 113.1, 105.9, 61.7, 56.3, 14.8; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₉H₁₈N₃O₅: 368.1246, found:368.1243; IR (KBr) cm⁻¹: 1033.9, 1240.1, 1528.9, 1601.9, 1722.1, 2940.3, 3140.3; Anal. Calcd for C₁₉H₁₇N₃O₅: C: 62.12; H: 4.66; N: 11.44%, found: C: 62.11; H: 4.62; N: 11.49%

3-(3-Nitro-phenyl)-1-(4-nitro-phenyl)-1H-pyrazole-4-carboxylic acid ethyl ester (4j)

Yield: 86%, (0.328 g); M.p. 93-95 °C; Characteristics: Yellow crystalline solid;

¹H NMR (300 MHz, CDCl₃): δ 8.69 (s, 1H), 8.37-8.35 (m, 2H), 8.24-8.19 (m, 2H), 7.72 (d, 2H, *J*=9 Hz), 7.62 (t, 1H, J=8.1 Hz), 7.46 (s, 1H), 4.33 (q, 2H, *J*=7.2), 1.34 (t, 3H, *J*=7.1Hz); ¹³C NMR (75 MHz, CDCl₃): δ 167.2, 158.3, 150.3, 148.6, 147.5, 144.6, 141.8, 139.1, 135.4, 134.6, 133.5, 132.2, 129.4, 127.9, 126.3, 124.2, 61.9, 14.1; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₈H₁₅N₄O₆:

383.0992, found:383.0990; IR (KBr) cm⁻¹: 1078.2, 1238.7, 1310.2, 1530.1, 1607.9, 1730.8, 2960.6, 3149.8; Anal. Calcd for C₁₈H₁₄N₄O₆: C: 56.55; H: 3.69; N: 14.65% found: C: 56.51; H: 3.68; N: 14.61%

3-(4-Bromo-phenyl)-1-(4-nitro-phenyl)-1*H*-pyrazole-4-carboxylic acid methyl ester (4k)

Yield: 87%, (0.349 g); M.p. 121-122 °C; Characteristics: Yellow crystalline solid;

¹H NMR (300 MHz, CDCl₃): δ 7.89 (d, 2H, *J*=8.7 Hz), 7.55 (d, 2H, *J*=9 Hz),7.45-7.14(m, 5H), 3.79(s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 167.1, 147.7, 145.2, 133.6, 132.9, 130.2, 128.8, 128.5, 127.5, 126.1, 124.6, 124.3, 116.2, 52.5; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₇H₁₃BrN₃O₄: 402.0089, found:402.0085; IR (KBr) cm⁻¹: 1006.7, 1239.1, 1530.0, 1599.1, 1713.12933.9, 3135.6; Anal. Calcd for C₁₇H₁₂BrN₃O₄: C: 50.77; H: 3.01; N: 10.45%, found: C: 50.74; H: 3.00; N: 10.44%

3-(4-Fluoro-phenyl)-1,4-diphenyl-1H-pyrazole (41)

Yield: 85%, (0.267 g); M.p. 93-95 °C; Characteristics: White crystalline solid;

¹H NMR (300 MHz, CDCl₃): δ 7.84-7.81 (m, 2H), 7.55 (d, 2H, *J*=8.1Hz), 7.31(t, 2H, *J*=7.8 Hz), 7.12-7.04 (m, 8H), 6.8 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 163.3 (C-F), 137.8, 132.9, 132.8, 130.2, 129.4, 129.1, 128.9, 128.5, 125.6, 124.8, 120.4, 116.0, 115.9, 115.8, 115.7, 115.6; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₂₁H₁₆FN₂: 315.1298, found: 315.1296; IR (KBr) cm⁻¹: 1159.4, 1294.6, 1431.7, 1604.4, 1655.5, 2850.5; Anal. Calcd for C₂₁H₁₅FN₂: C: 80.24; H: 4.81; N: 8.91%, found: C: 80.22; H: 4.80; N: 8.99%

1,4-Diphenyl-3-*m*-tolyl-1*H*-pyrazole (4m)

Yield: 81%, (0.251 g); M.p. 81-82 °C; Characteristics: Yellow amorphous solid;

¹H NMR (300 MHz, CDCl₃): δ 7.46-7.41 (m, 3H), 7.33-7.27 (m, 4H), 7.23-7.20 (m, 3H), 7.10 (t, 2H, *J*=7.5 Hz), 6.95 (d, 2H, *J*=7.5 Hz), 6.84 (s, 1H), 2.22 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 152.0, 139.9, 139.1, 137.6, 137.1, 131.0, 130.4, 129.5, 129.1, 127.9, 126.6, 126.9, 124.4, 123.5, 120.9, 21.0; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₂₂H₁₉N₂: 311.1548, found:311.1545; IR (KBr) cm⁻¹: 1129.9, 1291.6, 1430.5, 1600.5, 1651.3, 2890.6; Anal. Calcd for C₂₂H₁₈N₂: C: 85.13; H: 5.85; N: 9.03, found: C: 85.15; H: 5.88; N: 9.07%

3-Furan-2-yl-1,4-diphenyl-1*H*-pyrazole (4n)

Yield: 84%, (0.240 g); M.p. 73-74 °C; Characteristics: Yellow amorphous solid;

¹H NMR (300 MHz, CDCl₃): δ 7.77 (d, 2H, *J*=7.5 Hz), 7.48-7.26 (m, 6H), 7.14-7.07 (m, 4H), 6.46-6.40(m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 152.0, 147.2, 141.9, 139.3, 130.4, 130.3, 129.1, 126.4, 121.4, 118.8, 115.2, 114.9, 110.7, 108.2; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₉H₁₅N₂O: 287.1184, found: 287.1181; IR (KBr) cm⁻¹: 1094.5, 1240.6,1430.6, 1500.9, 1699.1, 2698.7 ; Anal. Calcd for C₁₉H₁₄N₂O: C: 79.70; H: 4.93; N: 9.78%, found: C: 79.71; H: 4.91; N: 9.74%

1-(4-Nitro-phenyl)-3,4-diphenyl-1*H*-pyrazole (40)

Yield: 83%, (0.283 g); M.p. 99-101 0 C (Lit: 102-103 0 C); Characteristics: Yellow amorphous solid; ¹H NMR (300 MHz, CDCl₃): δ 8.16-8.07 (m, 2H), 7.68 (d, 1H, *J*=7.5 Hz), 7.60-7.31 (m, 11H), 7.23 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 153.9, 152.0, 139.1, 133.5, 132.2, 132.1, 129.4, 127.9, 126.3, 124.2, 122.4, 116.2, 113.9; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₂₁H₁₆N₃O₂, found:342.1239; IR (KBr) cm⁻¹: 1136.5, 1255.0, 1550.4, 1607.4, 1728.5, 2960.2, 3148.3; Anal. Calcd for C₂₁H₁₅N₃O₂: C: 73.89; H: 4.43; N: 12.31%, found: C: 73.87; H: 4.45; N: 12.30%

4-(4-Fluoro-phenyl)-3-isopropyl-1-phenyl-1*H*-pyrazole (5a)

Yield: 94%, (0.263 g); M.p. 80-81 ^oC; Characteristics: Yellow crystalline solid;

¹H NMR (300 MHz, CDCl₃): δ 7.76 (s, 1H), 7.62 (d, 2H, *J*=7.8 Hz), 7.40-7.14 (m, 5H), 7.06-6.97 (m, 2H), 3.13(m, 1H), 1.25 (d, 6H, *J*=6.9 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 157.2 (C-F), 140.2, 137.5, 130.1, 129.9, 129.4, 127.5, 126.5, 126.1, 125.4, 121.6, 118.8, 115.6, 115.3, 114.9, 26.5, 22.6; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₈H₁₈FN₂: 281.1454, found: 281.1450; IR (KBr) cm⁻¹: 1174.8, 1241.2, 1504.3, 1575.5, 1608.9, 2850.8; Anal. Calcd for C₁₈H₁₇FN₂: C: 77.12; H: 6.11; N: 9.99%, found: C: 77.10; H: 6.10; N: 9.98 %

4-(4-fluorophenyl)-1-phenyl-3-(*p*-tolyl)-1*H*-pyrazole (5b)

Yield: 87%, (0.285 g); M.p. 83-84 °C; Characteristics: Yellow amorphous solid;

¹H NMR (300 MHz, CDCl₃): δ 7.63(d, 3H, *J*=8.1 Hz), 7.54-7.34 (m, 3H), 7.28-6.94 (m, 8H), 2.37 (s, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 162.0 (C-F), 154.8, 150.5, 137.8, 137.5, 132.6, 131.4, 130.2, 129.3, 129.2, 129.1, 128.9, 125.4, 116.9, 116.6, 116.1, 115.8, 21.5; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₂₂H₁₈FN₂: 329.1454, found: 329.1450; IR (KBr) cm⁻¹: 1098.6, 1244.2, 1446.5, 1520.1, 1605.5, 2866.3; Anal. Calcd for C₂₂H₁₇FN₂: C: 80.47; H: 5.22; N: 8.53%, found: C: 80.47; H: 5.23; N: 8.52%

4-(4-Fluoro-phenyl)-3-(3-nitro-phenyl)-1-phenyl-1*H*-pyrazole (5c)

Yield: 89%, (0.319 g); M.p. 101-103 °C; Characteristics: Yellow crystalline solid;

¹H NMR (300 MHz, CDCl₃): δ 8.45 (s, 1H), 8.10-8.07 (m, 1H), 7.94-7.88 (m, 2H), 7.78-7.71 (m, 3H), 7.46-7.20(m, 7H); ¹³C NMR (75 MHz, CDCl₃): δ 158.8 (C-F), 155.5, 143.3, 142.6, 134.4, 129.6, 128.8, 125.3, 125.2, 124.8, 124.4, 124.0, 122.9, 122.1, 117.8, 117.4, 117.1, 113.8, 110.8, 110.6; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₂₁H₁₅FN₃O₂: 360.1148, found:360.1144; IR (KBr) cm⁻¹: 1130.8, 1249.3, 1327.6, 1529.5, 1611.0, 2950.1, 3026.5; Anal. Calcd for C₂₁H₁₄FN₃O₂: C: 70.19; H: 3.93; 11.69%, found: C: 70.20; H: 3.92; N: 11.68% 4-(4-Fluoro-phenyl)-3-isopropyl-1-(4-nitro-phenyl)-1*H*-pyrazole (5d)

Yield: 86%, (0.279 g); M.p. 85-86 ^oC; Characteristics: Yellow crystalline solid;

¹H NMR (300 MHz, CDCl₃): δ 8.36 (s, 1H), 8.19 (d, 2H, *J*= 9 Hz), 8.04 (d, 2H, *J*= 8.6 Hz), 7.64-7.61(m, 2H), 7.37-7.24(m, 2H), 3.13 (m, 1H), 1.23 (d, 6H *J*=6.6 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 161.2 (C-F), 147.2, 137.5, 130.5, 130.2, 127.5, 125.9, 124.9, 123.8, 123.6, 123.4, 116.1, 115.6, 114.3, 26.6, 22.2; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₈H₁₇FN₃O₂: 326.1305, found: 326.1301; IR (KBr) cm⁻¹: 1025.6, 1246.6, 1509.4, 1598.5, 1631.2, 2896.3, 3010.2; Anal. Calcd for C₁₈H₁₆FN₃O₂: C: 66.45; H: 4.96; N: 12.92%, found: C: 66.44; H: 4.94; N: 12.95%

2-Phenyl-2,4-dihydro-chromeno[4,3-c]pyrazole (7a)

Yield: 91%, (0.226 g); M.p. 79-80 $^{\circ}$ C (Lit: 81-82 $^{\circ}$ C); Characteristics: Yellow crystalline solid; ¹H NMR (300 MHz, CDCl₃): δ 7.80 (dd, 1H, J=7.5 Hz, 1.8 Hz), 7.65-7.60 (m, 2H), 7.41-7.34 (m, 3H), 7.24-7.12 (m, 1H), 6.98-6.87 (m, 3H), 5.27 (s, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 156.4, 154.1, 135.8, 133.1, 130.0, 129.6, 129.1, 126.3, 122.7, 122.3, 122.1, 122.1, 119.2, 117.4, 63.3; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₆H₁₃N₂O: 249.1028, found:249.1025; IR (KBr) cm⁻¹: 1089.6, 1229.8, 1471.3, 1502.8, 1599.3, 1689.9, 2800.3; Anal. Calcd for C₁₆H₁₂N₂O: C: 77.40; H: 4.87; N: 11.28%, found: C: 77.45; H: 4.84; N: 11.25%

General Procedure for the synthesis of isoxazolines

The reaction was performed via the same method for pyrazoles. A mixture of aldehyde (1mmol), hydroxyl amine hydrochloride (1 mmol), sodium acetate (1 mmol), and olefin derivatives (1mmol)

were added to a well stirred solution of SDS (10 mol %) in 5 ml H₂O at room temperature. Then PhIO (1.5 mmol) was added portion wise to the resulting mixture carefully maintaining the temperature at 0 $^{\circ}$ C. When the addition was complete the reaction was allowed to attain room temperature and stirring was continued for the required period of time (monitored by TLC). After completion of the reaction, the mixture was extracted with ethyl acetate (3x10ml). Removal of ethyl acetate under reduced pressure and purification of the crude product by column chromatography (silica gel 100-200 mesh, ethyl acetate-hexane as eluent) provided pure products. All compounds were well characterized by ¹H, ¹³C NMR, FT-IR and HRMS analysis.

3-Phenyl-4,5-dihydro-isoxazole-5-carboxylic acid ethyl ester (6a)

Yield: 92%, (0.201 g); M.p. 28-29 ^oC (Lit: 31-33 ^oC); Characteristics: Yellow amorphous solid;

¹H NMR (300 MHz, CDCl₃): δ 7.68-7.63 (m, 2H), 7.45-7.41 (m, 3H), 5.16 (dd, 1H, *J*=10.4, 7.8 Hz), 4.26 (q, 2H, *J*=7.1Hz), 3.65-3.62 (m, 2H), 1.32 (t, 3H, *J*=7.1 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 170.3, 156.1, 133.7, 130.5, 128.8, 128.5, 126.9, 126.8, 78.1, 62.0, 38.9, 14.1; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₂H₁₄NO₃: 220.0974, found: 220.0971; IR (KBr) cm⁻¹: 1032.6, 1210.1, 1449.1, 1736.1, 2963.7, 3471.2; Anal. Calcd for C₁₂H₁₃NO₃: C: 65.74; H: 5.98; N: 6.39%, found: C: 65.71; H: 5.96; N: 6.36%

3-(3-Nitro-phenyl)-4,5-dihydro-isoxazole-5-carboxylic acid ethyl ester (6b)

Yield: 89%, (0.235 g); M.p. 66-67 °C (Lit: 65-67 °C); Characteristics: White crystalline solid;

¹H NMR (300 MHz, CDCl₃): δ 8.30 (s, 1H), 8.17 (d, 1H, *J*=8.4 Hz), 7.98 (d, 1H *J*=7.8 Hz), 7.56-7.51(m, 1H), 5.22 (dd, 1H, *J*=10.2, 7.8 Hz), 4.20 (q, 2H, *J*=7.1 Hz), 3.70-3.63 (m, 2H,), 1.25(t, 3H, *J*=7.2 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 169.8, 154.6, 148.3, 132.4, 130.1, 129.8, 124.9, 121.9, 78.8, 62.4, 38.4, 14.1; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₂H₁₃N₂O₅: 265.0824, found: 265.0820; IR (KBr) cm⁻¹: 1145.7, 1210.9, 1463.7,1548.1, 1720.6, 2863.3, 2933.4, 3012.3, 3548.5 ; Anal. Calcd for C₁₂H₁₃N₂O₅: C: 54.55; H: 4.58; N: 10.60%, found: C: 54.54; H: 4.56; N: 10.62%

3-Thiophen-2-yl-4,5-dihydro-isoxazole-5-carboxylic acid ethyl ester (6c)

Yield: 84%, (0.189 g); Characteristics: Yellow oil;

¹H NMR (300 MHz, CDCl₃): δ 7.59-7.57(m, 1H), 7.37-7.34 (m, 1H), 7.19-7.17(m, 1H), 5.09 (dd, 1H, *J*=10.2, 7.8 Hz), 4.18 (q, 2H, *J*=6.9 Hz), 3.60-3.57 (m, 2H,), 1.24(t, 3H, *J*=7.1 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 170.5, 163.1, 134.8, 129.0, 129.1, 127.4, 78.2, 62.1, 38.9, 14.1; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₀H₁₂NO₃S: 226.0538, found: 226.0536; IR (KBr) cm⁻¹: 1156.3, 1216.2, 1440.4, 1608.2, 1730.1, 2866.3, 2998.3, 3263.6; Anal. Calcd for C₁₀H₁₁NO₃S: C: 53.32; H: 4.92; N: 6.22%, found: C: 53.35; H: 4.90; N: 6.21%

3-(4-Methoxy-phenyl)-4,5-dihydro-isoxazole-5-carboxylic acid ethyl ester (6d)

Yield: 85%, (0.209 g); Characteristics: Yellow oil;

¹H NMR (300 MHz, CDCl₃): δ 7.55-7.51(m, 2H), 6.88-6.82(m, 2H), 5.05 (dd, 1H, *J*=10.2, 7.8 Hz), 4.18 (q, 2H, *J*=7.2 Hz), 3.76 (s, 3H), 3.55-3.51 (m, 2H,), 1.24(t, 3H, *J*=7.2 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 170.4, 161.3, 155.6, 128.6, 121.8, 114.4,113.7, 78.1, 62.1, 55.6, 39.2, 14.2; HRMS (ESI- TOF) m/z: $[M+H]^+$ Calculated for $C_{13}H_{16}NO_4$: 250.1079, found: 250.1075; IR (KBr) cm⁻¹: 1201.6, 1446.1, 1601.5, 1710.6, 2933.6, 3022.1, 3456.9; Anal. Calcd for $C_{13}H_{15}NO_4$: C: 62.64; H: 6.07; N: 5.62%, found: C: 62.65; H: 6.05; N: 5.61%

3,5-Diphenyl-4,5-dihydro-isoxazole (6e)

Yield: 90%, (0.200 g); M.p. 70-72 ^oC (Lit: 75-76 ^oC); Characteristics: Yellow crystalline solid;

¹H NMR (300 MHz, CDCl₃): δ 7.65-7.51 (m, 2H), 7.31-7.21 (m, 8H), 5.61 (dd, 1H, *J*=10.2, 8.1Hz), 3.65 (dd, 1H, *J*=16.6,10.8 Hz), 3.21 (dd, 1H, *J*=16.8, 8.4Hz); ¹³C NMR (75 MHz, CDCl₃): δ 156.0, 140.8, 137.4, 130.2, 129.1, 129.0, 128.1, 128.0, 126.1, 125.9, 82.5, 43.1; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₅H₁₄NO: 224.1075, found: 224.1072; IR (KBr) cm⁻¹: 1059.3, 1212.7, 1453.0, 1599.6, 2830, 3030.2, 3532.2 ; Anal. Calcd for C₁₅H₁₃NO: C: 80.69; H: 5.87; N: 6.27%, found: C: 80.66; H: 5.89; N: 6.29%

3-(4-bromophenyl)-5-phenyl-4,5-dihydroisoxazole (6f)

Yield: 90%, (0.272 g); M.p. 140-141 0 C (Lit: 141-142 0 C); Characteristics: White crystalline solid; ¹H NMR (300 MHz, CDCl₃): δ 7.53-7.46 (m, 5H), 7.37-7.29 (m, 4H), 5.73 (dd, 1H, *J*=10.8, 8.4Hz), 3.73 (dd, 1H, *J*=16.7,10.8 Hz), 3.33 (dd, 1H, *J*=16.5, 8.4Hz); ¹³C NMR (75 MHz, CDCl₃): δ 150.3, 140.7, 132.7, 132.1, 131.2, 129.0, 128.4, 128.3, 126.1, 82.9, 42.9; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₅H₁₃BrNO: 302.0181, found: 302.0179; IR (KBr) cm⁻¹: 1101.4, 1439.6, 1598.2, 2892.3, 3021.2, 3466.5 ; Anal. Calcd for $C_{15}H_{12}BrNO:$ C: 59.62; H: 4.00; N: 4.64% , found: C: 59.60; H: 4.02; N: 4.62%

3-isopropyl-5-phenyl-4,5-dihydroisoxazole (6g)

Yield: 91%, (0.172 g); Characteristics: Yellow oil;

¹H NMR (300 MHz, CDCl₃): δ 7.27-7.17 (m, 5H), 5.44 (dd, 1H, *J*=10.5, 8.1 Hz), 3.28 (dd, 1H, *J*=17.1,10.8 Hz), 2.81(dd, 1H, *J*=16.8, 8.1 Hz), 2.65 (m, 1H), 1.11 (d, 6H, J=6.9 Hz); ¹³C NMR (75 MHz, CDCl₃): δ 157.1, 135.4, 131.5, 126.0, 123.1, 122.1, 121.9, 120.0, 75.4, 37.3, 21.9, 14.3; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₂H₁₆NO: 190.1232, found: 190.1230; IR (KBr) cm⁻¹: 1010.6, 1310.9, 1567.1, 2900.6, 3028.9, 3412.9; Anal. Calcd for C₁₂H₁₆NO: C: 76.16; H: 7.99; N: 7.40%, found: C: 76.18; H: 7.97; N: 7.42%

3-Phenyl-3a,4,5,6,7,7a-hexahydro-benzo[d]isoxazole (6h)

Yield: 92%, (0.185 g); M.p. 80-81 °C (Lit: 79-81 °C); Characteristics: White crystalline solid;

¹H NMR (300 MHz, CDCl₃): δ 7.59-7.56 (m, 2H), 7.35-7.30 (m, 3H), 4.83-4.75 (m, 1H), 3.68-3.63(m, 1H), 2.01-1018 (m, 8H); ¹³C NMR (75 MHz, CDCl₃): δ 160.2, 129.5, 128.7, 127.0, 84.9, 51.4, 31.1, 30.1, 27.0, 23.7 ; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₃H₁₆NO: 202.1232, found: 202.1230 ; IR (KBr) cm⁻¹: 1310.4, 1400.6, 1558.3, 1701.8, 2904.5, 3010.5, 3396.3; Anal. Calcd for C₁₃H₁₆NO: C: 77.58; H: 7.51; N: 6.96%, found: C: 77.55; H: 7.50; N: 6.92% 3,5-Diphenyl-isoxazole (6i)

Yield: 86%, (0.190 g); M.p. 139-140 0 C (Lit: 140-142 0 C); Characteristics: white crystalline solid; ¹H NMR (300 MHz, CDCl₃): δ 7.98-7.94(m, 2H), 7.54-7.48(m, 8H), 6.98 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 172.1, 161.8, 137.4, 133.7, 130.0, 129.9, 129.2, 128.8, 128.6, 128.5, 128.3, 128.2, 128.1, 127.6, 97.5; HRMS (ESI-TOF) m/z: [M+H]⁺ Calculated for C₁₅H₁₂NO: 222.0919, found: 222.0914; IR (KBr) cm⁻¹: 1201.4, 1455.4, 1540.2, 1604.4, 21910.5, 3042.5, 3112.2, 3564.8 ; Anal. Calcd for C₁₅H₁₁NO: C: 81.43; H: 5.01; N: 6.33%, found: C: 81.41; H: 5.05; N: 6.35%

3a,4-Dihydro-3*H*-chromeno[4,3-*c*]isoxazole (7b)

Yield: 92%, (0.161 g); M.p. 60-62 °C (Lit: 62-64 °C); Characteristics: White crystalline solid;

¹H NMR (300 MHz, CDCl3): δ 7.68 (d, 1H, *J*=7.5 Hz), 7.26-7.18 (m, 1H), 6.92-6.83(m, 2H,), 4.60-4.53(m, 2H), 4.01-3.94 (m, 1H), 3.89-3.75 (m, 2H); 13C NMR (75 MHz, CDCl3): δ 155.6, 152.8, 132.5, 125.6, 121.8, 117.4, 113.0, 70.6, 69.2, 45.9; HRMS (ESI-TOF) m/z: [M+H]+ Calculated for C₁₀H₁₀NO₂:176.0712, found:176.0710; IR (KBr) cm⁻¹: 1026.3, 1209.2, 1410.4, 1560.3, 1710.1, 2896.3, 3010.5, 3566.9; Anal. Calcd for C₁₀H₉NO₂: C: 68.56; H: 5.18; N: 8.00%, found: C: 68.58; H: 5.16; N: 8.01%

4*H*-Chromeno[4,3-*c*]isoxazole (7c)

Yield: 90%, (0.155 g); M.p. 42- 43 °C (Lit: 42 °C); Characteristics: White crystalline solid;

¹H NMR (300 MHz, CDCl3): δ 8.24(s, 1H), 7.91 (dd, 1H, J=7.6, 1.5 Hz), 7.42-7.36(m, 1H,), 7.16-7.04(m, 2H), 5.27 (s, 2H); 13C NMR (75 MHz, CDCl3): δ 154.8, 153.6, 150.6, 132.1, 124.5, 122.4, 117.9, 113.9, 111.1, 61.3; HRMS (ESI-TOF) m/z: [M+H]+ Calculated for C₁₀H₈NO₂:174.0555, found:174.0553; IR (KBr) cm⁻¹: 1045.6, 1211.8,1496.8, 1501.1, 1705.1, 2988.9, 3112.5, 3496.9; Anal. Calcd for C₁₀H₇NO₂: C: 69.36; H: 4.07; N: 8.09%, found: C: 69.38; H: 4.09; N: 8.07%

2. ¹HNMR and ¹³CNMR Spectra of the Compounds (4a-4o, 5a-5d, 6a-6i, 7a-7c):

¹H NMR of Compound 4a

¹³C NMR of Compound 4a

 $^1\mathrm{H}$ NMR of Compound 4b

¹³C NMR of Compound 4b

¹H NMR of Compound 4c

¹³C NMR of Compound 4c

¹H NMR of Compound 4d

¹³C NMR of Compound 4d

¹H NMR of Compound 4e

¹³C NMR of Compound 4e

¹H NMR of Compound 4f

¹³C NMR of Compound 4f

¹H NMR of Compound 4g

¹³C NMR of Compound 4g

¹H NMR of Compound 4h

¹³C NMR of Compound 4h

¹H NMR of Compound 4i

¹³C NMR of Compound 4i

¹H NMR of Compound 4j

¹³C NMR of Compound 4j

¹³C NMR of Compound 4k

¹³C NMR of Compound 4k

¹H NMR of Compound 41

¹³C NMR of Compound 41

¹H NMR of Compound 4m

¹³C NMR of Compound 4m

 $^1\mathrm{H}$ NMR of Compound 4n

¹³C NMR of Compound 4n

¹H NMR of Compound 40

¹³C NMR of Compound 40

¹H NMR of Compound 5a

¹³C NMR of Compound 5a

¹H NMR of Compound 5b

¹³C NMR of Compound 5b

¹H NMR of Compound 5c

¹³C NMR of Compound 5c

 $^1\mathrm{H}$ NMR of Compound 5d

¹³C NMR of Compound 5d

¹H NMR of Compound 6a

¹³C NMR of Compound 6a

¹H NMR of Compound 6b

¹³C NMR of Compound 6b

 $^1\mathrm{H}$ NMR of Compound 6c

¹³C NMR of Compound 6c

¹H NMR of Compound 6d

¹³C NMR of Compound 6d

¹H NMR of Compound 6e

¹³C NMR of Compound 6e

¹H NMR of Compound 6f

¹³C NMR of Compound 6f

 $^1\mathrm{H}$ NMR of Compound 6g

¹³C NMR of Compound 6g

 $^1\mathrm{H}$ NMR of Compound 6h

¹³C NMR of Compound 6h

¹H NMR of Compound 6i

¹³C NMR of Compound 6i

¹H NMR of Compound 7a

¹³C NMR of Compound 7a

¹H NMR of Compound 7b

¹³C NMR of Compound 7b

¹H NMR of Compound 7c

¹³C NMR of Compound 7c