Supplementary Data – RSC Advances

Determination of the loading and stability of Pd in an arborescent copolymer in ethanol by microplasma-optical emission spectrometry

Olivier Nguon, Mario Gauthier*, Vassili Karanassios

Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1 Canada.

*Corresponding author. Tel.: +1 519 888-4567 ext. 35205; Fax: +1 519 746-0435. E-mail address: gauthier@uwaterloo.ca

Figure S1: Examples of analyte emission signals acquired with the microplasma device over 5 successive runs using a Pd standard solution in water and injection volumes of 3.0, 6.0 and 10.0 μ L, respectively. The precision of the signals, and the stability of intra-day microplasma background optical emission are noteworthy. Even though the microplasma was operated continuously for more than 10 hours for these experiments, only a small fraction of the analytical runs performed during this time period has been included above.

Figure S2: (color online). Calibration curves for Pd standard solutions in a) water (blue diamonds) and b) ethanol (red squares).

Figure S3: (color online). Calibration curve for Pd in a solution of G1-Pd(OAc)₂[0.25 equiv] in ethanol (blue diamonds), and analysis of dialyzed sample G1-Pd(OAc)₂ using injection volumes of 3.0 µL (red square), 6.0 µL (green triangle) and 10.0 µL (purple circle).

Injection	Pd-Std in Water		Pd-Std in EtOH		G1-Pd(OAc) ₂ in EtOH	
volume	Precision	Detection	Precision	Detection	Precision	Detection
(μL)	(%RSD)	limit (pg)	(%RSD)	limit (pg)	(%RSD)	limit (pg)
3.0	0.1	33	7.4	62	3.8	28
6.0	1.7	16	5.7	62	1.3	29
10.0	0.5	44	0.7	65	2.1	26
Average ^c		31 + 14		63 + 2		28 + 2

Table S1: Precision^{*a*} and detection limit^{*b*} for solutions of Pd-Std in water and ethanol, and G1-Pd(OAc)₂ in ethanol, determined for a Pd mass ranging from 3-10 ng.

^{*a*} The precision was determined in terms of the peak area percent relative standard deviation (%RSD), and is the average of at least 3 measurements. ^{*b*} The detection limit was estimated using the 3σ criterion, and from a minimum of 3 measurements. ^{*c*} Average and standard deviation for all the injection volumes, determined from a minimum of 9 measurements.

Table S2: Pd quantification with 3, 6 and 10 μ L injection volumes for solutions prepared with 1.5 molar equivalent of Pd per 2VP units (*G*1-Pd[100 mol %]).

Injection volume (µL)	Calculated Pd Mass $(ng)^a$	Pd Attached $(mol \%)^b$	Calculated Pd/2VP (mol %)	Precision (%RSD) ^c
3.0	2.12	66.1	98.4	2.3
6.0	4.09	64.6	96.3	3.3
10.0	7.42	69.7	103.9	3.0
Average ^d		66.8 ± 2.8	99.5 ± 4.2	

^{*a*} Mass measured with the microplasma-OES instrument, obtained from a minimum of 3 measurements. ^{*b*} Mole percent of Pd remaining after dialysis. ^{*c*} The precision is expressed in terms of the percent relative standard deviation, in relation to the mol % of Pd/2VP. ^{*d*} Average and standard deviation for all the injection volumes, determined from a minimum of 9 measurements. Based on pooled standard deviation and a t-test, it was found statistically valid (at the 95% confidence level) to retain the Pd mass (ng) determined using 3 μ L volumes despite the slight extrapolation of the calibration curve to lower concentrations.

Injection volume (µL)	Calculated Pd Mass $(ng)^a$	Pd attached $(mol \%)^b$	Calculated Pd/2VP (mol %)	Precision (%RSD) ^c				
3.0	2.85	93.9	23.8	5.4				
6.0	5.59	92.1	23.4	4.9				
10.0	9.47	93.6	23.7	2.7				
Average ^d		93.3 ± 3.7	23.7 ± 0.9					

Table S3: Pd quantification with 3, 6 and 10 μ L injection volumes for solutions prepared with 0.25 molar equivalent of Pd per 2VP units (*G*1-Pd[24 mol %]).

^{*a*} Mass measured with the microplasma-OES instrument, obtained from a minimum of 3 measurements. ^{*b*} Mole percent of Pd remaining after dialysis. ^{*c*} The precision is expressed in terms of the percent relative standard deviation, in relation to the mol % of Pd/2VP. ^{*d*} Average and standard deviation for all the injection volumes, determined from at least 9 measurements. The Pd mass (ng) determined from 3 μ L was retained despite the slight extrapolation of the calibration curve (based on statistical tests detailed in the caption of Table S2).

Figure S4: (color online). Graphical analysis of the first-order rate of aggregation of $Pd(OAc)_2$ in ethanol (red squares), and Pd in a standard solution in water (blue diamonds).

Figure S5: (color online). Change of the mass concentration of Pd in a standard solution in water as measured by microplasma-optical emission spectrometry.