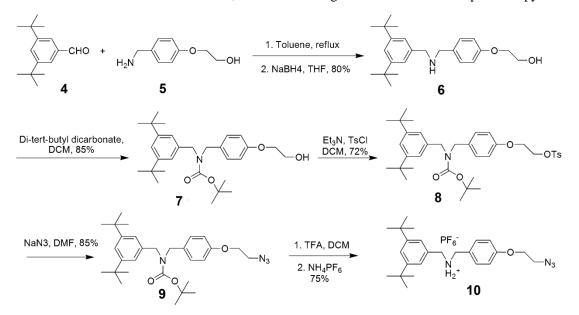
Supporting Information

An Anthracene-Containing Bistable [2]Rotaxane Featuring Color and Fluorescence Changes


Wei Zhou, Ying Wu, Bao-Qi Zhai, Qiao-Chun Wang and Da-Hui Qu*

Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, P. R. China. dahui_qu@ecust.edu.cn

Experimental Section

General method: ¹H NMR and ¹³C NMR spectra were measured on a Brüker AV-400 spectrometer. The electronic spray ionization (ESI) mass spectra were tested on a LCT Premier XE mass spectrometer. The UV-Vis absorption spectra and fluorescence spectra were obtained on a Varian Cary 100 spectrometer and a Varian Cary Eclipse (1-cm quartz cell used), respectively. The quantum yields of fluorescence were measured by using a Fluoromax-4 fluorescence spectrophotometer equipped with the quantum yield measuring accessory and report generator program.

Materials: Chemicals were used as received from Acros, Aldrich. All solvents were reagent grade, which were dried and distilled prior to use according to standard procedures. The molecular structures were confirmed via ¹H NMR, ¹³C NMR and high-resolution ESI mass spectroscopy.

Scheme S1 Synthetic strategy to prepare compound 10

Synthesis of the compound 6

A mixture of 3,5-Ditert-butylbenzaldehyde (0.65 g, 2.99 mmol) and compound **5** (0.5 g, 2.99 mmol) in dry toluene (70 mL) was refluxed overnight under argon atmosphere. The solvent was removed under vacuum, and the residue was dissolved in THF (50 mL). To the solution was added NaBH₄ (1.2 g, 30.0 mmol) in portion under ice bath. After the mixture was stirred for overnight,

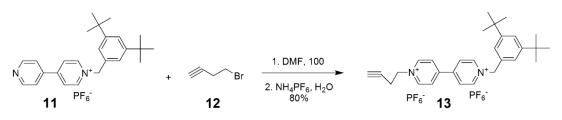
the solution was poured into water, and the mixture was extracted by DCM (3×50 mL). The organic layer was dried over anhydrous sodium sulfate, and then concentrated to give the free amine compound. The residue was purified via column chromatography (SiO₂, CH₂Cl₂/MeOH = 20/1) to give a pale solid **6** (0.88g, 80%). ¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.32 (t, *J* = 1.6 Hz, 1H), 7.26 (d, *J* = 8.8 Hz, 2H), 7.16 (d, *J* = 1.6 Hz, 2H), 6.87 (d, *J* = 8.6 Hz, 2H), 4.06 (m, 2H), 3.93 (m, 2H), 3.77 (d, *J* = 6.4 Hz, 4H), 1.33 (s, 18H). ¹³C NMR (100 MHz, CDCl₃, 298 K): δ = 157.7, 150.8, 139.0, 132.6, 129.5, 122.4, 121.0, 114.4, 69.3, 61.2, 53.6, 52.5, 34.8, 31.5. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₄H₃₆NO₂, 370.2746; found, 370.2744.

Synthesis of the compound 7

To the solution of amine **6** (1 g, 2.71 mmol) in dry DCM (50 mL) was added di-tert-butyldicarbonate (1.18 g, 5.42 mmol) and the mixture was stirred for 5 h at room temperature. The residue was washed with water, dried over Na₂SO₄ and evaporated in vacuo to give a crude product, which was purified by column chromatography (SiO₂, CH₂Cl₂/MeOH = 100/1) to give product **7** (1.08 g, 85 %) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.31 (t, *J* = 1.6 Hz, 1H), 7.18 (d, *J* = 7.4 Hz, 1H), 7.08 (m, 3H), 6.87 (d, *J* = 8.5 Hz, 2H), 4.35 (m, 4H), 4.07 (m, 2H), 3.96 (m, 2H), 1.50 (s, 9H), 1.31 (s, 18H). ¹³C NMR (100 MHz, CDCl₃, 298 K): δ = 156.0, 150.8, 121.1, 114.5, 79.8, 69.2, 61.4, 60.2, 34.7, 34.3, 31.4, 31.3, 28.51, 24.6, 22.3, 14.2, 13.9. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₉H₄₄NO₄, 470.3270; found, 470.3272.

Synthesis of the compound 8

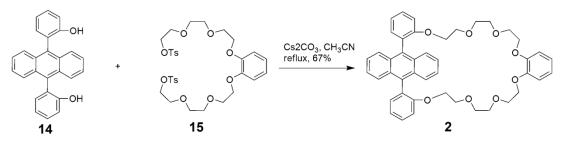
To the solution of compound **7** (1.08 g, 2.30 mmol) in dry DCM (50 mL) was added 4-toluene sulfonyl chloride (0.88 g, 4.65 mmol) and triethylamine (0.65 ml, 4.65 mmol), then the mixture was stirred for 12 h at room temperature. The residue was washed with water, dried over Na₂SO₄ and evaporated in vacuo to give a crude product, which was purified by column chromatography (SiO₂, CH₂Cl₂) to give product **8** (1.01 g, 72 %) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 7.82$ (d, J = 8.3 Hz, 2H), 7.38-7.30 (m, 3H), 7.14 (d, J = 7.2 Hz, 1H), 7.04 (m, 3H), 6.73 (d, J = 8.6 Hz, 2H), 4.36 (m, 4H), 4.27 (m, 2H), 4.18-4.10 (m, 2H), 2.44 (s, 3H), 1.50 (s, 9H), 1.33 (s, 18H). ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta = 157.2$, 156.0, 150.8, 145.0, 132.8, 129.9, 129.4, 128.8, 128.0, 121.9, 121.1, 114.5, 79.8, 68.2, 65.5, 34.8, 31.5, 29.7, 28.5, 21.7. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₃₆H₅₀NO₆S, 624.3359; found, 624.3355.


Synthesis of the compound 9

A mixture of compound **8** (1 g, 1.65 mmol) and sodium azide (0.54 g, 8.25 mmol) in dry DMF (50 mL) was stirred at 80 °C for 16 h under argon atmosphere. After the reaction mixture had been cooled to room temperature, the solution was evaporated under reduced pressure. The residue was purified via column chromatography (SiO₂, CH₂Cl₂) to give **9** (0.69 g, 85%) as a colorless oil. ¹H NMR (CDCl3, 400 MHz, 298 K): δ = 7.31 (t, *J* = 1.6 Hz, 1H), 7.18 (d, *J* = 7.4 Hz, 1H), 7.07 (m, 3H), 6.87 (d, *J* = 8.5 Hz, 2H), 4.4-4.27 (m, 4H), 4.18-4.12 (m, 2H), 3.59 (m, 2H), 1.50 (s, 9H), 1.31 (s, 18H). ¹³C NMR (100 MHz, CDCl₃, 298 K): δ = 156.4, 154.9, 149.7, 136.1, 129.9, 128.4, 127.8, 121.2, 120.8, 120.0, 113.5, 78.7, 65.9, 49.1, 33.7, 30.4, 27.4. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₉H₄₃N₄O₃, 495.3335; found, 495.3339.

Synthesis of the compound 10

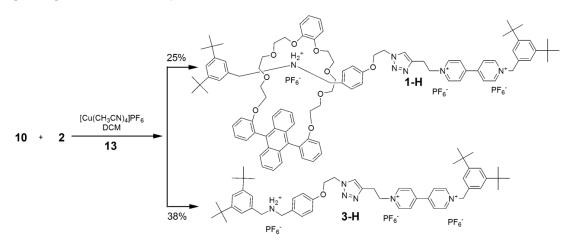
TFA (0.8 mL, 10.4 mmol) was added to a solution of product **9** (0.5 g, 1.01 mmol) in dichloromethane (10 mL) and the mixture was stirred for 10 h. A saturated aqueous solution of NH_4PF_6 (20 mL) was added to the reaction mixture for 4 h. The organic layer was separated and evaporated under reduced pressure to get the yellow solid, which was dissolved in MeOH (10 mL)


and added 20 mL saturated aqueous solution of NH₄PF₆. After stirring for 5 h, the mixture was diluted with CH₂Cl₂ (10 mL), the organic layer was separated and evaporated under reduced pressure to get the crude product, which was purified by column chromatography (SiO₂, CH₂Cl₂/MeOH = 50/1) to afford product **10** (0.41 g, 75 %) as a faint yellow solid. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.45 (t, *J* = 1.6 Hz, 1H), 7.26 (m, 2H), 7.17 (d, *J* = 1.6 Hz, 2H), 6.92 (d, *J* = 8.7 Hz, 2H), 4.14-4.08 (m, 2H), 4.03 (s, 2H), 3.99 (s, 2H), 3.58 (t, *J* = 4.9 Hz, 2H), 1.32 (s, 18H). ¹³C NMR (100 MHz, CDCl₃, 298 K): δ = 159.1, 152.2, 131.2, 130.1, 123.7, 115.2, 66.7, 51.7, 50.5, 50.6, 34.9, 31.3, 29.7. HRMS (ESI) *m*/*z*: [M-PF₆]⁺ calcd for C₂₄H₃₅N₄O₂, 395.2811; found, 395.2813.

Scheme S2 Synthetic strategy to prepare compound 13

Synthesis of the compound 13

The pyridinium salt **11** (0.3 g, 0.53 mmol) was added to a CH₃CN solution (10 mL) of 4-bromo-1-butyne **12** (0.15 g, 1.1 mmol); this mixture was then stirred at 100 °C for 24 h. Saturated aqueous NH₄PF₆ (20 mL) was added to the solution; the organic solvent was evaporated and the residue was extracted with CH₂Cl₂ (2 × 20 mL). The organic phases were combined, dried (Na₂SO₄), and concentrated to afford a crude product, which was purified by column chromatography (SiO₂, CH₂Cl₂/MeOH = 25/1) to give compound **13** as a light-yellow solid (0.29 g, 80 %). ¹H NMR (CD₃SOCD₃, 400 MHz, 298 K): δ = 9.59 (d, *J* = 6.2 Hz, 2H), 9.39 (d, *J* = 6.0 Hz, 2H), 8.79 (t, *J* = 6.3 Hz, 4H), 7.55 (s, 2H), 7.47 (s, 1H), 5.87 (s, 2H), 4.84 (t, *J* = 6.2 Hz, 1H), 3.11 (s, 1H), 3.04 (s, 2H), 1.29 (s, 18H). ¹³C NMR (100 MHz, CD₃SOCD₃, 298 K) δ = 151.5, 149.1, 148.8, 145.9, 145.4, 133.3, 128.0, 127.2, 126.4, 125.4, 123.3, 123.1, 79.0, 75.3, 64.1, 58.7, 34.7, 31.1, 20.3. HRMS (ESI) *m*/*z*: [M-PF₆]⁺ calcd for C₂₉H₃₆N₂PF₆, 557.2520; found, 557.2518.



Scheme S3 Synthetic strategy to prepare compound 2

Synthesis of the compound 2

A solution of diphenol **14** (1.2 g, 3.31 mmol), compound **15** (2.2 g, 3.31 mmol), and Cs₂CO₃ (3.9 g, 12 mmol) in CH₃CN (100 mL) was heated to reflux under N₂ for 24 h. Then the organic solvent was evaporated and the residue was extracted with CH₂Cl₂ (3×50 mL), and the combined organic layer was washed with brine (3×50 mL), dried over Na₂SO₄ and evaporated in vacuo to obtain oily liquid, which was purified by column chromatography (SiO₂, CH₂Cl₂/MeOH = 30/1) to give product **2** (1.56 g, 67 %) as a blue solid. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.64 (dd, *J* = 6.7, 3.2 Hz, 4H), 7.52 (t, *J* = 7.8 Hz, 2H), 7.33-7.28 (m, 6H), 7.22-7.12 (m, 4H), 6.88-6.78 (m, 4H),

4.01 (t, J = 4.6 Hz, 8H), 3.69-3.65 (m, 4H), 3.37 (t, J = 5.1 Hz, 4H), 3.25-3.20 (m, 4H), 3.06-3.02 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta = 157.3$, 148.8, 133.7, 133.0, 130.0, 129.3, 127.9, 126.9, 124.7, 121.2, 121.1, 113.7, 112.7, 70.8, 70.3, 69.4, 68.9, 68.8, 68.7. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₄₄H₄₄O₈Na, 723.2934; found, 723.2933.

Scheme S4 Synthetic strategy to prepare compound 1-H and 3-H

Synthesis of the compound 3-H and 1-H

A mixture of azide 10 (0.16 g, 0.29 mmol) and crown ether 2 (0.21 g, 0.29 mmol) was stirred in dry CH₂Cl₂ (5 mL) at room temperature for 1 h. After alkyne 13 (0.25 g, 0.35 mmol) and $Cu(CH_3CN)_4PF_6$ (0.024 g, 0.058 mmol) were added to the solution, the mixture was stirred for two days. After removal of the solvent, the residue was first purified via column chromatography $(SiO_2, CH_2Cl_2/MeOH = 100/1)$ to give compound **1-H** (0.14 g, 25 %) as a light orange powder, ¹H NMR (CD₃COCD₃, 400 MHz, 298 K): $\delta = 9.29$ (d, J = 6.1 Hz, 2H), 9.07 (d, J = 6.0 Hz, 2H), 8.43 (m, 5.8 Hz, 4H), 7.81 (s, 1H), 7.68-7.57 (m, 7H), 7.55 (d, J = 1.4 Hz, 2H), 7.51 (m, 2.9 Hz, 3H),7.42 (d, J = 8.4 Hz, 2H), 7.37 (m, 2H), 7.32 (d, J = 1.4 Hz, 2H), 7.26-7.15 (m, 8H), 6.71 (m, 6H), 5.96 (s, 2H), 5.05 (t, J = 6.4 Hz, 2H), 4.74 (t, J = 5.0 Hz, 2H), 4.29 (t, J = 5.0 Hz, 2H), 4.05 (m, 12H), 3.66-3.31 (m, 18H), 1.32 (s, 18H), 1.25 (s, 18H). ¹³C NMR (100 MHz, CD₃COCD₃, 298 K) $\delta = 158.86, 157.06, 152.42, 151.47, 149.84, 147.37, 145.37, 134.19, 133.25, 132.39, 131.55,$ 130.08, 129.74, 127.70, 127.28, 127.00, 126.96, 126.71, 125.28, 125.16, 124.14, 123.81, 123.76, 123.38, 121.55, 121.32, 114.47, 114.11, 113.75, 112.80, 70.15, 69.35, 69.08, 68.16, 67.76, 66.34, 65.41, 60.74, 49.32, 34.76, 34.62, 33.57, 31.73, 30.73, 26.73, 22.42, 13.45. HRMS (ESI) m/z: $[M-2PF_6]^{2+}$ calcd for $C_{97}H_{115}N_6O_9PF_6$, 826.9201; found, 826.9189; $[M-3PF_6]^{3+}$ calcd for C₉₇H₁₁₅N₆O₉, 502.9586; found, 502.9527. Then purified via column chromatography (SiO₂, $CH_2Cl_2/MeOH = 20/1$) to give compound **3-H** (0.13 g, 38 %) as a light orange solid. ¹H NMR (CD₃SOCD₃, 400 MHz, 298 K): δ = 9.57 (d, *J* = 6.9 Hz, 2H), 9.37 (d, *J* = 6.9 Hz, 2H), 9.04 (s, 2H), 8.75 (m, 4H), 8.07 (s, 2H), 7.54 (d, J = 1.6 Hz, 2H), 7.45-7.39 (m, 4H), 7.29 (d, J = 1.6 Hz, 2H), 7.00 (d, J = 8.7 Hz, 2H), 5.86 (s, 2H), 5.00 (t, J = 7.1 Hz, 2H), 4.74 (t, J = 4.9 Hz, 2H), 4.40 (t, J = 44.9 Hz, 2H), 4.17-4.08 (m, 4H), 3.44 (t, J = 7.2 Hz, 2H), 1.29 (s, 36H). ¹³C NMR (100 MHz, CD_3SOCD_3 , 298 K) $\delta = 158.2$, 151.5, 150.8, 148.8, 145.9, 145.4, 141.7, 133.3, 131.6, 131.1, 127.1, 126.3, 124.1, 123.7, 123.6, 123.6, 123.2, 123.1, 122.5, 114.6, 50.3, 49.7, 48.9, 34.7, 34.5, 31.1, 31.1, 26.5. HRMS (ESI) m/z: $[M-PF_6]^+$ calcd for $C_{53}H_{71}N_6P_2F_{12}$, 1097.4973; found, 1097.4977.

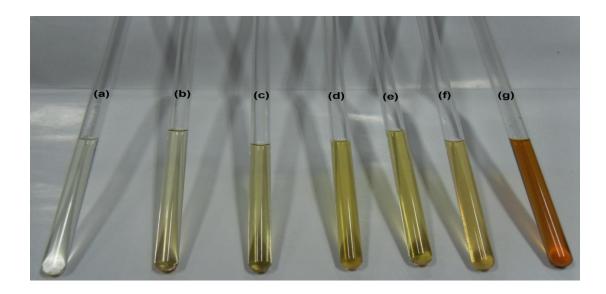


Fig. S1 Photograph of (a) [2]rotaxane 1-H in CD₃COCD₃, (b) [2]rotaxane 1-H in CD₃SOCD₃, (c) the mixture obtained after addition of 2 equiv Bu₃N to sample a, (d) the mixture obtained after addition of 3.5 equiv TBAF to sample a, (e) the mixture obtained after addition of 3.5 equiv TBACl to sample a, (f) the mixture obtained after addition of 3.5 equiv TBABr to sample a, and (g) the mixture obtained after addition of 2 equiv TBAI to sample a.

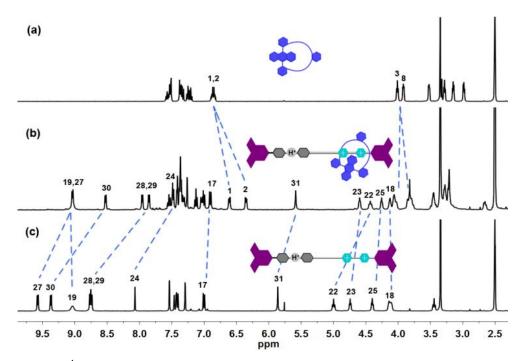


Fig. S2 Partial ¹H NMR spectra (400 MHz, DMSO-d₆, 298 K) of (a) macrocycle 2, (b) [2]rotaxane **1-H**, (c) thread component **3-H**.

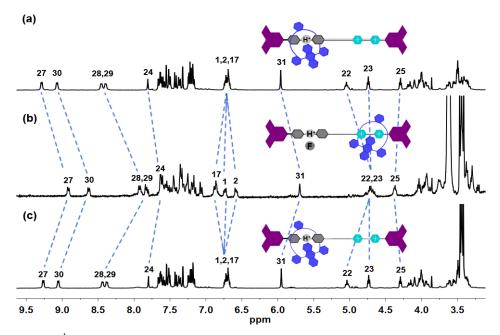


Fig. S3 Partial ¹H NMR spectra (400 MHz, CD_3COCD_3 , 298 K) of (a) [2]rotaxane **1-H**, (b) the solution obtained after adding 3.5 equiv of TBAF to the solution of a, and (c) the solution obtained after adding 4 equiv of Ca(PF₆)₂ to the solution of b.

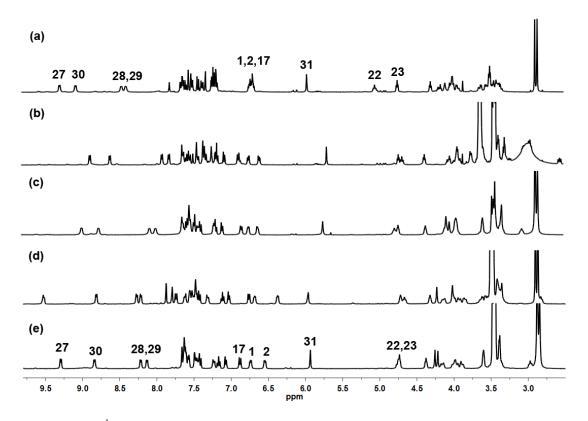


Fig. S4 Partial ¹HNMR spectra (CD₃COCD3, 400 MHz, 298 K) of (a) [2]rotaxane **1-H**, (b) the mixture obtained after addition of 3.5 equiv TBAF to sample a, (c) the mixture obtained after addition of 3.5 equiv TBACl to sample a, (d) the mixture obtained after addition of 3.5 equiv TBABr to sample a, and (e) the mixture obtained after addition of 3.5 equiv TBAI to sample a.

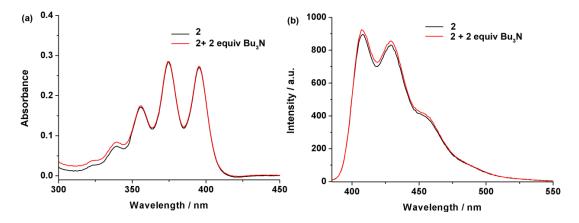


Fig. S5 (a) Absorption and (b) fluorescence spectral changes of **2** in CH_2Cl_2 (2×10⁻⁵ M) upon addition of 2 equiv of Bu_3N . Excitation wavelength was 375 nm.

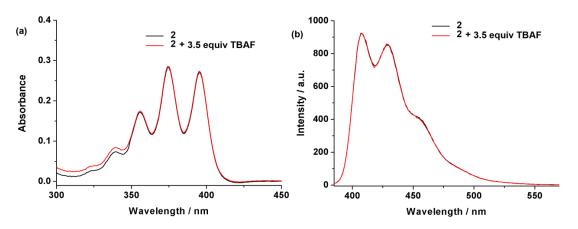


Fig. S6 (a) Absorption and (b) fluorescence spectral changes of **2** in CH_2Cl_2 (2×10⁻⁵ M) upon addition of 3.5 equiv of TBAF. Excitation wavelength was 375 nm.

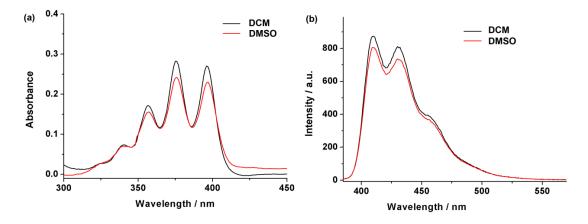


Fig. S7 (a) Absorption and (b) fluorescence spectra of macrocycle 2 (2×10^{-5} M) in DCM and DMSO. Excitation wavelength was 375 nm.

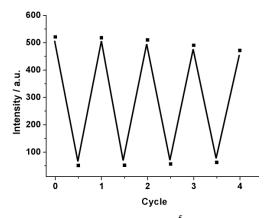


Fig. S8 Fluorescence intensity of **1-H** in CH_2Cl_2 (2 × 10⁻⁵ M) at 410 nm upon addition of alternate external stimuli (Bu₃N and TFA) for four cycles. The excitation wavelength was 375 nm.

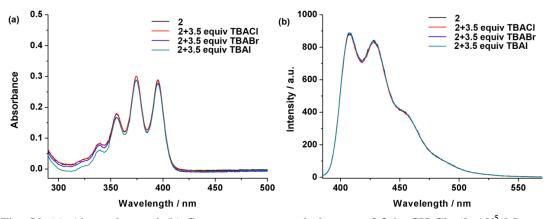


Fig. S9 (a) Absorption and (b) fluorescence spectral changes of **2** in CH_2Cl_2 (2×10⁻⁵ M) upon addition of 3.5 equiv of TBACl, TBABr, and TBAI. Excitation wavelength was 375 nm.

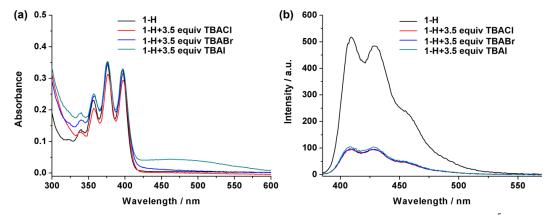
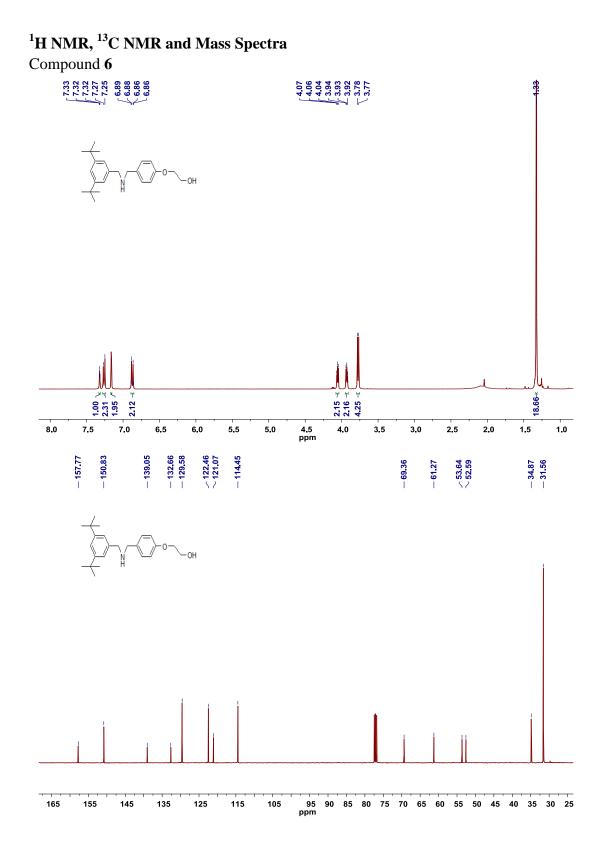
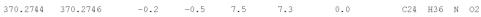
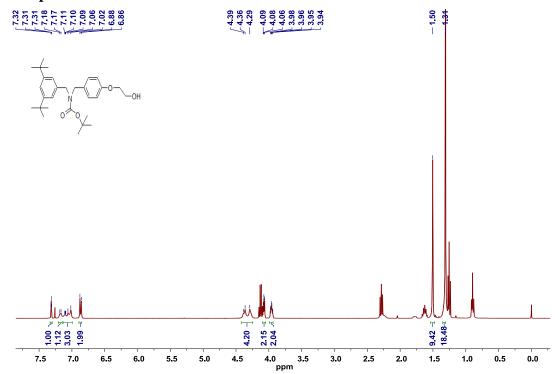
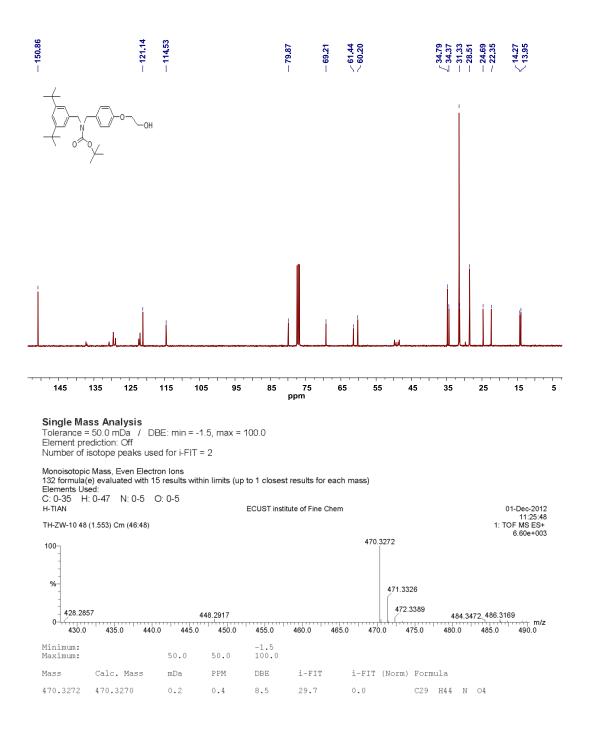
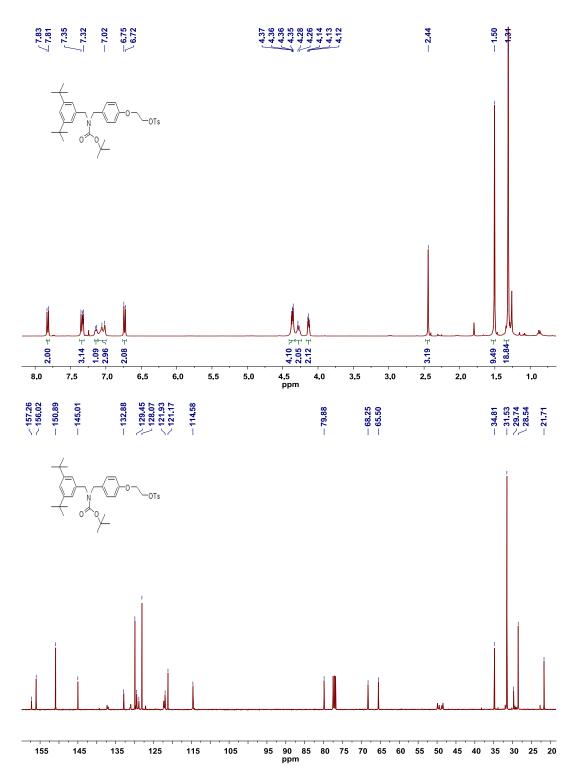



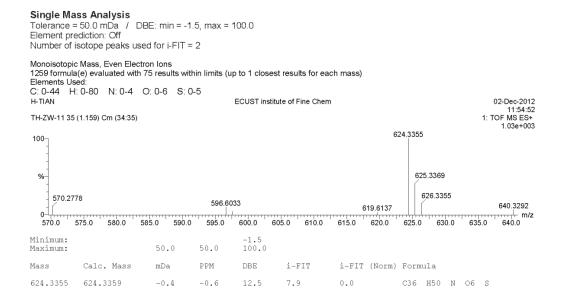

Fig. S10 (a) Absorption and (b) fluorescence spectral changes of **1**-H in CH_2Cl_2 (2×10⁻⁵ M) upon addition of 3.5 equiv of TBACl, TBABr, and TBAI. Excitation wavelength was 375 nm.

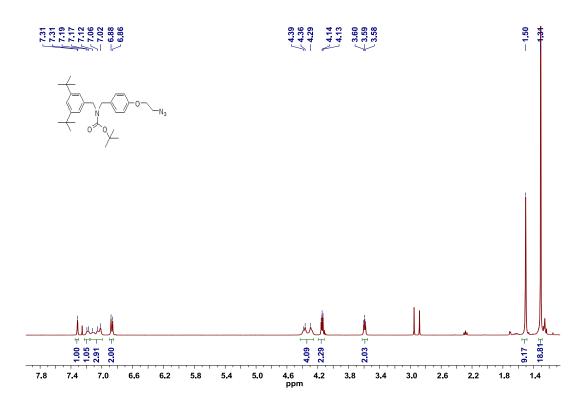


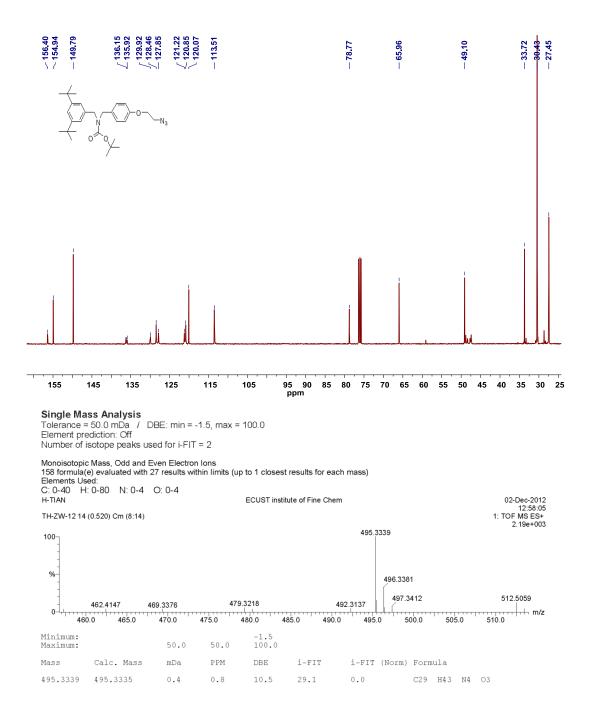

Single Mass Analysis Tolerance = 50.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2

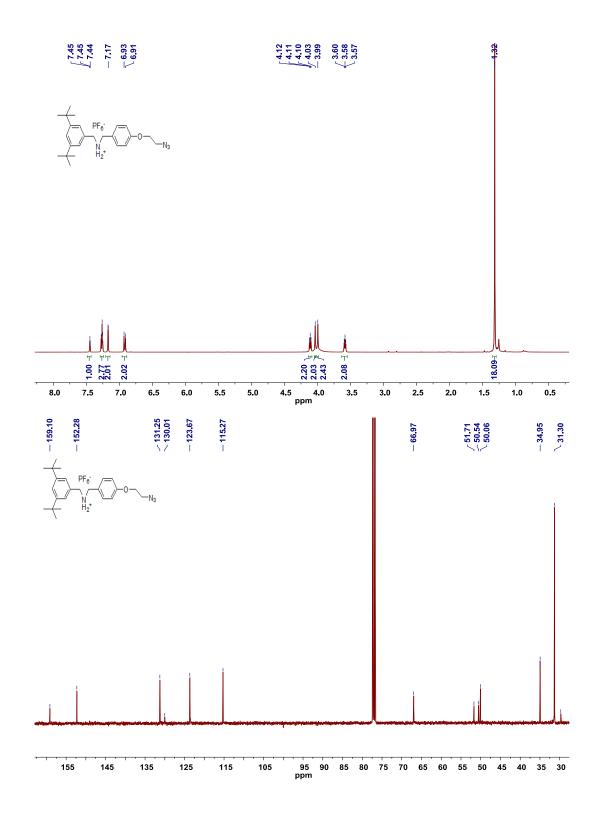

Monoisotopic Mass, Even Electron Ions 579 formula(e) evaluated with 38 results within limits (up to 1 closest results for each mass) Elements Used: C: 0-65 H: 0-120 N: 0-10 O: 0-14 H-TIAN ECUST institute of Fine Chem TH-ZW-9 36 (1.181) Cm (31:40)


02-Dec-2012 21:45:24 1: TOF MS ES+ 6.00e+003

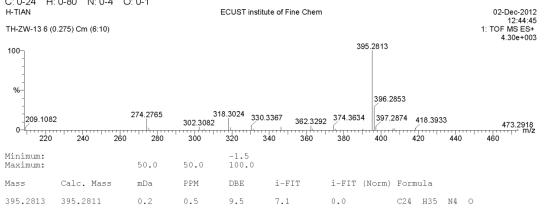


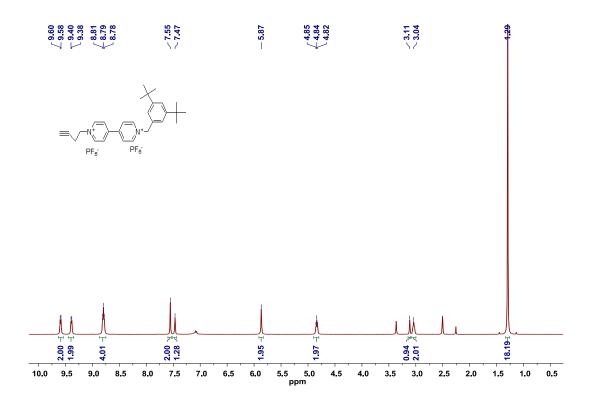


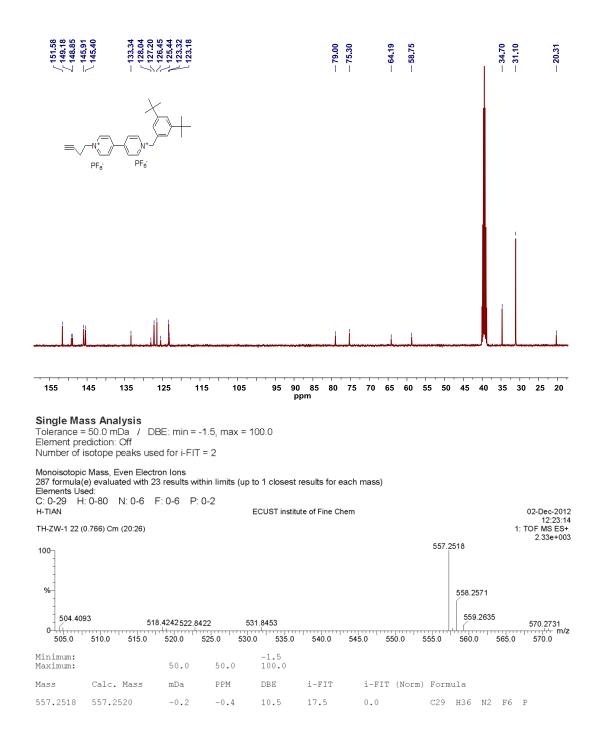


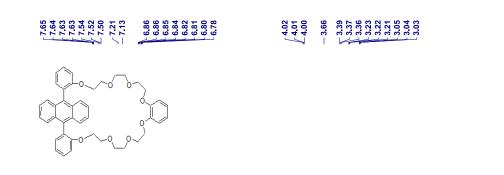


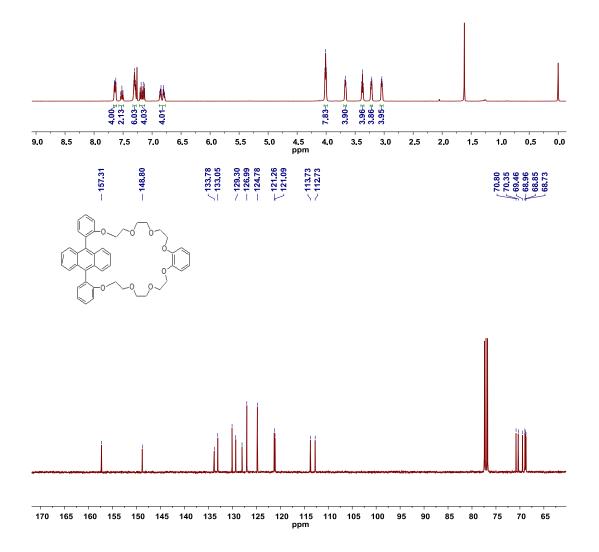
Single Mass Analysis Tolerance = 50.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2

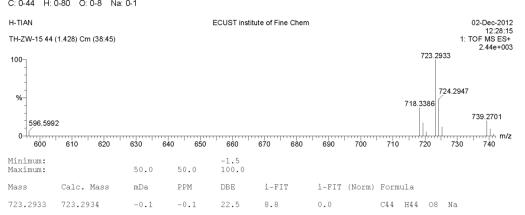

 Monoisotopic Mass, Even Electron Ions

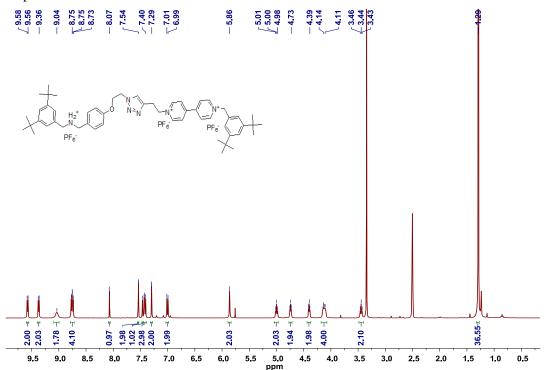

 13 formula(e) evaluated with 1 results within limits (up to 1 closest results for each mass)


 Elements Used:


 C: 0-24
 H: 0-80
 N: 0-4
 O: 0-1

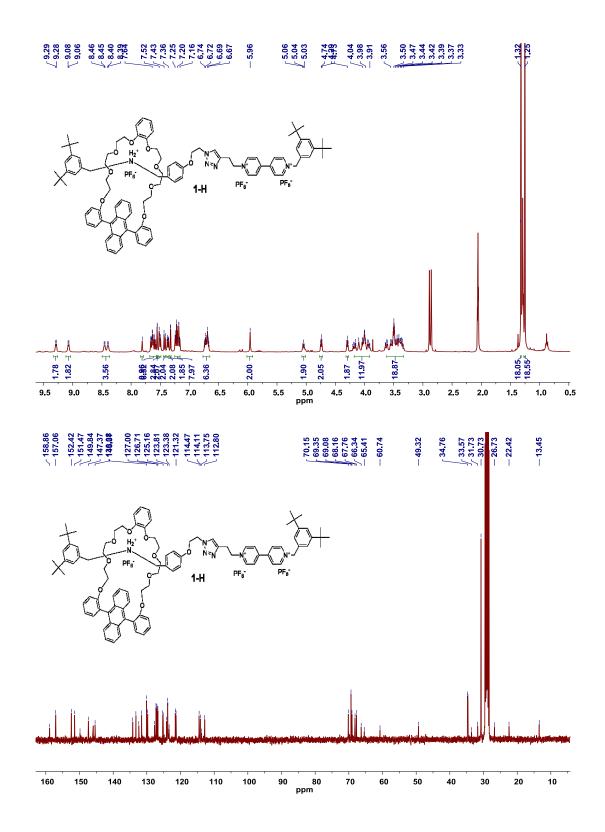

 H-TIAN
 ECUST institute of Fine Chem

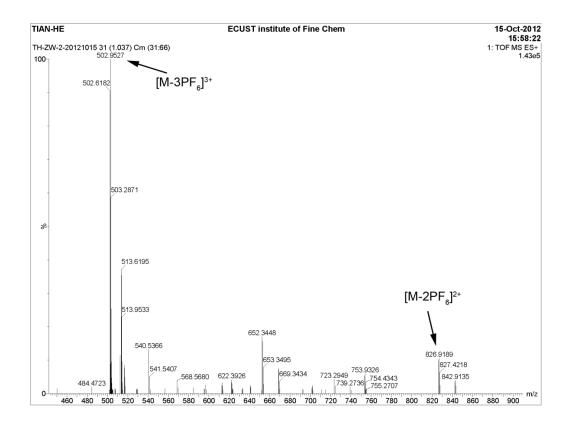




Single Mass Analysis Tolerance = 50.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions 20 formula(e) evaluated with 1 results within limits (up to 1 closest results for each mass) Elements Used: C: 0-44 H: 0-80 O: 0-8 Na: 0-1




Compound 3-H

Compound 1-H

