Supporting Information Available for

Synthesis, Reaction, and Optical Properties of Cyclic Oligomers bearing 9,10-Diphenylanthracene Based on an Aromatic Tertiary Amide Unit

Ryohei Yamakado,^a Shin-ichi Matsuoka,^a Masato Suzuki,^a Daisuke Takeuchi,^b Hyuma Masu,^c Isao Azumaya,^d and Koji Takagi^a*

a Department of Materials Science and Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan

b Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan

c Chemical Analysis Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

d Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan

Contents

1. Synthesis of C3A', C4A', and 2	S2–S3
2. Copy of NMR spectra	S4–S13
3. GPC profiles	S14
4. MALDI-TOF MS	S15–S16
5. UV and fluorescence spectra	S17–S19

Scheme S1. Synthetic route to cyclic aromatic oligomers C3A' and C4A'.

C3A'

Yield, 25%. M.p. >300 °C. ¹H NMR (δ , 600 MHz, ppm, CDCl₃) 7.64 (d, *J* = 8.0 Hz, 6H), 7.54 (d, *J* = 8.9 Hz, 6H), 7.47 (d, *J* = 8.9 Hz, 6H), 7.41 (d, *J* = 8.2 Hz, 6H), 7.39–7.36 (12H), 6.94 (m, 6H), 6.89 (m, 6H), 4.21 (t, *J* = 7.8 Hz, 6H), 1.95 (m, 6H), 1.14 (t, *J* = 7.7 Hz, 9H). ¹³C NMR (δ , 150 MHz, ppm, CDCl₃) 170.5, 143.0, 140.7, 136.8, 136.2, 136.1, 135.9, 131.9, 130.6, 130.0, 129.9, 128.9, 128.1, 126.5, 126.1, 125.5, 125.2, 51.6, 21.2, 11.5.

C4A'

Yield 10%. M.p. >300 °C. ¹H NMR (δ , 600 MHz, ppm, CDCl₃) 7.67 (d, *J* = 7.9 Hz, 6H), 7.60 (m, 6H), 7.57 (m, 6 H), 7.43 (d, *J* = 8.3 Hz, 6H), 7.41 (d, *J* = 8.3 Hz, 6H), 7.35 (d, *J* = 8.3 Hz, 6H), 7.15 (t, *J* = 7.0 Hz, 6H), 7.11 (t, *J* = 7.0 Hz, 6H), 4.17 (t, *J* = 7.4 Hz, 6H), 1.90 (m, 6H), 1.57 (m, 6H), 1.13 (t, *J* = 7.0 Hz, 9H). ¹³C NMR (δ , 150 MHz, ppm, CDCl₃) Not available due to low solubility.

Scheme S2. Synthetic route to model compound **2**. Condition and reagents: i) Benzoylchloride, Pyridine, THF, reflux; (ii) *N*-Methylaniline, LiHMDS (1 M THF soln.), THF, 0 °C.

6

Compound 1' was prepared as 1. To a solution of 1' (222 mg/ 0.5 mmol) in pyridine (2 mL) and THF (2 mL) was added benzoylchloride (0.08 mL/ 0.6 mmol), and the system was heated to reflux overnight. The reaction mixture was poured into water, and an aqueous phase was extracted with DCM. The combined organic phase was washed with 1 M HCl. After drying over MgSO₄, solvents were removed by the rotary evaporator. The crude product was purified by column chromatography (ethyl acetate/DCM = 1/3) to obtain yellow powder (250 mg, 91%). M.p. 256–257 °C. ¹H NMR (δ , 200 MHz, ppm, CDCl₃) 8.28 (d, *J* = 8.6 Hz, 2H), 8.17 (d, *J* = 8.0 Hz, 2H), 7.71–7.27 (17H), 4.10–3.90 (5H), 1.83 (m, 2H), 1.08 (t, *J* = 7.0 Hz, 3H).

2

To a THF (5 mL) solution of **6** (250 mg/ 0.45 mmol) and *N*-methylaniline (0.08 mL/ 0.75 mmol) was added dropwise a 1.0 M THF solution of LiHMDS (1.0 mL), and the system was stirred for 10 h. After saturated aq. NH_4Cl was added, an aqueous phase was extracted with DCM. A combined organic phase was dried over MgSO₄ and solvents were removed by the rotary evaporator. The resulted solid was recrystallized with CHCl₃/hexane to give yellow crystals (140 mg, 50%).

M.p. 329–330 °C. ¹H NMR (δ , 200 MHz, ppm, CDCl₃) 7.53 (d, J = 7.8 Hz, 2H), 7.51–7.46 (2H), 7.43 (d, J = 7.8 Hz, 2H), 7.37–7.21 (d, J = 7.9 Hz, 2H), 7.20 (d, J = 8.6 Hz, 2H), 4.06 (d, J = 6.1 Hz, 2H), 3.61 (s, 3H), 1.07 (t, J = 6.1 Hz, 3H). ¹³C NMR (δ , 50 MHz, ppm, CDCl₃) 170.7, 170.4, 144.9, 140.2, 136.6, 136.2, 131.9, 130.7, 129.5, 129.1, 128.7, 128.1, 127.7, 127.1, 126.7, 125.1, 38.3, 30.3, 21.2, 11.5.

2. Copy of NMR spectra

Figure S1. ¹H NMR spectrum of **3** in CDCl₃.

Figure S2. ¹³C NMR spectrum of **3** in CDCl₃.

Figure S4. ¹³C NMR spectrum of **4** in CDCl₃.

Figure S6. ¹³C NMR spectrum of **5** in CDCl₃.

Figure S8. ¹³C NMR spectrum of **1** in CDCl₃.

Figure S10. ¹³C NMR spectrum of **C3A** in CDCl₃.

Figure S11. H-H COSY of C3A in CDCl₃ (aromatic region).

Figure S12. ROESY of C3A in $CDCl_3$ (aromatic region).

Figure S13. ¹H NMR spectrum of C4A in CDCl₃.

Figure S14. H-H COSY of C4A in CDCl₃ (aromatic region).

Figure S15. ¹H NMR spectrum of **HC3A** in CDCl₃.

Figure S16. H-H COSY of HC3A in CDCl₃(aromatic region)

Figure S17. Variable-temperature ¹H NMR spectra of C3A in CDCl₃.

Figure S19. ¹³C NMR spectrum of **2** in CDCl₃.

2. GPC profiles

Figure S20. GPC (THF) profiles of reaction mixture.

4. UV and fluorescence spectra

T 11 C1	D / 1 1	1 /	• •		1	• , •	6.0		1.0	· •	
Table NL	Defailed	absorpt	ion and	emission	neak	nositions	of	5A :	and Z	in I) (IM
Tuble D1.	Detunieu	uosoipi	ion und	Chinobion	pean	positions	UI C			III L	/01/11.

Compound	λ_{abs}/nm	$\epsilon/M^{-1}cm^{-1}$	λ_{em}/nm	Φ^{a}
C3A	377	52000	438	0.15
C4A	378	59900	439	0.06
2	376	14900	425	0.15

^a Relative to quinine sulfate with $\Phi_{\rm fl}$ =0.55 as the standard.

Figure S24. UV and fluorescence spectra of C3A in Cyclohexane (purple), THF (green), DCM (black), MeCN (orange), and MeOH (red) (10^{-5} M) .

Figure S25. UV and fluorescence spectra of C3A (blue line) and C4A (red line) in DCM (solid line, 10^{-5} M) and solid-state (dashed line).

Figure S26. Solvent-dependent UV spectra of HC3A (10⁻⁵ M).

	E (20)	НСЗА						
	$L_{\rm T}(30)$	λ_{abs}	3	λ_{em}	Stokes shift	Φ^{a}		
	/kcal·mol	/nm	$/M^{-1}cm^{-1}$	/nm	/cm ⁻¹	/%		
СН	30.9	396	31000	449	2980.8	0.10		
Hexane	31.0	395	27000	446	2894.9	0.10		
Toluene	33.9	397	32500	464	3637.2	0.10		
DOX	36.0	397	29200	472	4002.5	0.16		
EtOAc	38.1	395	31700	488	4824.7	0.11		
DCM	40.7	397	31300	489	4739.0	0.08		
Acetone	42.2	396	31500	509	5606.2	0.09		
DMAc	42.9	397	30500	525	6141.3	0.11		
DMF	43.2	398	29400	527	6150.3	0.09		
DMSO	45.1	399	23000	543	6646.5	0.10		

Table S2. Detailed absorption and emission peak positions of HC3A in different solvents.

 a Relative to quinine sulfate with $\Phi_{\rm fl}{=}0.55$ as the standard.

Figure S27. Changes in UV and fluorescence spectra of **HC3A** in DCM upon the addition of TFA and TEA; **HC3A** (red solid line), **HC3A**/TFA = 1/100 (blue solid line), and **HC3A**/TFA/TEA = 1/100/200 (red broken line).