Electronic Supplementary Information (ESI)

New colorimetric fluorescent sensor for ratiometric

detection of cyanide in solution, paper strips, and in cells

Mingda Sun, Shaodan Wang,^a **Qingbiao Yang* Xiaoliang Fei,**^a **Yaoxian Li,**^a**and Yapeng Li*** ^a Department of Chemistry, Jilin University, Changchun, 130021, People's Republic of China.

CONTENTS

1. Synthesis of Probe Phc.

Compound 1 was prepared according the reported procedure.^{S1} Compound 2 was purchased from Sigma-Aldrich. For the preparation of **Phc compound**, compound 1 (0.255 g, 1.0 mmol) and compound 2 (0.301 g, 1.0 mmol) were dissolved in 20 ml ethanol. The reaction mixture was refluxed with stirring for 12 h and then evapor

At0ed in vacuum. The residue was purified by column chromatography on silica gel (CH₂Cl₂ / ethanol, 10:1 v/v) to give Phc (0.197 g) as a dark blue solid.^{S2} Yield, 48%. ¹H NMR (600MHz, CDCl₃) δ 8.5(m, 1H), 8.1(d, 1H), 7.5(m, 5H), 7.2(d, 1H), 7.1(d, 1H), 7.0(m, 3H), 4.4(s, 3H), 4.0(q, 2H), 1.8(s, 6H), 1.5(t, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 181.03, 153.36, 150.25, 142.62, 141.94, 141.55, 129.57, 129.52, 129.16, 128.10, 127.72, 127.31, 123.96; HRMS (positive mode, m/z): Calcd. 255.0718, found 255.0725 for [M + H]⁺.

The Phc-CN compound could be conveniently synthesized via the condensation of Phc and 2 equiv. of $(CH_3CH_2CH_2CH_2)_4N(CN)$ in ethanol at room temperature (yield: 95%), and purified by column chromatography on silica gel (CH_2Cl_2) as a pale green color. Note: the product is very unstable, and will decompose when exposed in the air. ¹H NMR (600MHz, $CDCl_3$) δ 7.3 (s, 3H), 7.2 (m, 1H), 7.2 (d, 1H), 7.1 (dd 1H), 7.1 (d, 1H), 7.0 (m, 1H), 6.9 (m, 3H), 6.6 (d, 1H), 6.1 (d, 1H) 4.0 (q, 2H), 2.8 (s, 3H), 1.6 (d, 6H), 1.5 (t, 3H); ¹³C NMR (150 MHz, CDCl3) δ 148.62, 145.30, 144.35, 136.60, 134.88, 128.29, 127.42, 127.40, 126.70, 125.00, 122.64, 120.28, 115.13, 114.93, 108.84, 80.47, 49.14, 45.85, 41.96, 31.58, 24.51, 23.01, 12.94; HRMS (positive mode, m/z): Calcd. 437.1926, found 438.1935 for $[M + H]^+$.

References

[S1] WANG Wei, ZHANG Ying-mu, LI Yao-xian, ZHAO Qing, Chem. Res. Chin. Univ. 2013, 29 (4), 632–637.

[S2] Xin Lv, Jing Liu, Yunlong Liu, Yun Zhao, Yuan-Qiang Sun, Pi Wang and Wei Guo,

Chem. Commun., 2011, 47, 12843–12845.

2. Characterization of the compounds.

Fig. S2 ¹H NMR charts of Phc in CDCl₃ (top) and Phc-CN⁻ in CDCl₃ (below), respectively.

Fig. S3 ¹³C NMR charts of Phc in CDCl₃ (top) and Phc-CN⁻ in CDCl₃ (below), respectively.

Fig. S4 Variation of the relative fluorescence intensity at 488 nm of Phc (10.0 μ M) in the presence of CN⁻ (35.0 μ M) and metal cations (Cu²⁺(Cu(ClO₄)₂) / Zn²⁺(Zn(ClO₄)₂)/Ca²⁺(Ca(Cl

 $O_4)_2$ /Fe²⁺(Fe(ClO₄)₂)/Ni²⁺(Ni(ClO₄)₂)/Mn²⁺(Mn(ClO₄)₂)/Pb²⁺(Pb(ClO₄)₂)/Cd²⁺(Cd(ClO₄)₂)/Hg²⁺(Hg(ClO₄)₂)/Nd²⁺(Nd(ClO₄)₂)/Ag⁺(AgClO₄)/Fe³⁺(Fe(ClO₄)₃), the concentration of each metal cations was 350 μ M; all solutions were excited at 350 nm, Slits: 5 nm/ 5 nm.

Fig. S5 From left to right (A-H) are photographs under fluorescence and visible light of Phc(10 μ M) with the addition of CN⁻ (0-3.5 eqiv.;0 eqiv., 0.5 eqiv., 1 eqiv., 1.5 eqiv., 2 eqiv., 2.5 eqiv., 3 eqiv., 3.5 eqiv.).

Fig. S6 I/I₀-1 intensity vs. [CN⁻] plot with corresponding liner fit analysis data.

Fig. S7 Time-dependent fluorescence changing of Phc (10 μ M).

Fig. S8 (a) Absorption spectra of Phc (100 μ M) and (b) fluorescence spectra of Phc (10 μ M) in the presence of anions (35 equiv.); (c) Fluorescence spectra of Phc (10 μ M) with CN⁻ (3.5 equiv.) in the addition of other anions (CN⁻, F⁻, Cl⁻, Br⁻, I⁻, N₃⁻, SCN⁻, NO₃⁻, EDTA, CH₃COO⁻, H₂PO₄⁻, HSO₃⁻ HPO₄²⁻, SO₄²⁻).

Fig. S9 Fluorescence spectra of Phc (10 μ M) with CN⁻ (3.5equiv.) in the presence of Fe³⁺ and Cu²⁺.

Fig. S10 Benesi-Hildebr plot from emission titration data of Phc (10 μ M) with CN⁻. The Benesi-Hildebrand equation: 1/(F-Fo)= 1/{Ka(F_{max}-F₀) [CN⁻]_n}+1/[F_{max}-Fo] Here F₀ is the fluorescence of the sensor in the absence of CN⁻, F is the fluorescence recorded in the presence of added guest, F_{max} is the fluorescence in presence of added [CN⁻]_{max}, Ka is the association constant.