Supporting Information

Tuning the electronic properties and quantum efficiency of blue Ir(III) carbene complexes via different azole-pyridine-based N^N' ligands

Yuqi Liu,^a Xiaobo Sun,^b Yanling Si,^{a, c} Xiaochun Qu,^a Ying Wang, *,^a and Zhijian Wu *,^a

^a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China.

^b Department of Applied Chemistry, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.

^c College of Resource and Environmental Science Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China.

* Corresponding authors. Email: <u>ywang_2012@ciac.ac.cn</u> (YW), <u>zjwu@ciac.ac.cn</u> (ZJW);*Tel:* +86-431-85682801

MOa	Energy/aV		MO comp	Agging		
MO	Energy/ev	Ir	fpmi1	fpmi2	pyN1	Assign
L+5	0.64	7	21	70	2	π*(fpmi)
L+4	0.37	6	69	22	3	π*(fpmi)
L+3	0.13	5	24	70	0	π*(fpmi)
L+2	-0.02	7	65	22	5	π*(fpmi)
L+1	-0.32	1	3	2	94	$\pi^*(\text{pyN1})$
L	-0.76	3	0	1	96	$\pi^*(\text{pyN1})$
Н	-5.00	3	1	1	94	π(pyN1)
H-1	-5.21	35	17	34	13	$d(Ir)+\pi(fpmi+pyN1)$
H-2	-5.40	32	21	10	36	$d(Ir)+\pi(fpmi+pyN1)$
H-3	-5.75	11	42	34	12	$d(Ir)+\pi(fpmi+pyN1)$
H-4	-5.95	26	22	43	9	$d(Ir)+\pi(fpmi)$
H-5	-6.27	27	47	20	5	d(Ir)+π(fpmi)

Table S1 Frontier molecular orbital energies (eV) and compositions (%) ofdifferent fragments in the ground state for complex 1a

^a H = HOMO; L = LUMO. ^b fpmi1 and fpmi2 are the same ligands, but in different positions, Fig. 1. pyN1 = 2-(1*H*-pyrrol-2-yl)pyridinato, Scheme 1.

Table S2 Frontier molecular orbital energies (eV) and compositions	(%)	of
different fragments in the ground state for complex 2a		

	En anov/aV		MO comp	Assign		
MO	Energy/ev	Ir	fpmi1	fpmi2	pyN2	Assign
L+5	0.71	6	10	82	1	π*(fpmi)
L+4	0.35	6	80	11	3	π*(fpmi)
L+3	0.17	6	5	88	1	$\pi^*(\text{fpmi2})$
L+2	-0.05	8	86	4	2	$\pi^*(\text{fpmil})$
L+1	-0.61	1	1	1	97	π* (pyN2)
L	-1.07	3	1	1	96	π* (pyN2)
Н	-5.20	33	15	46	5	d(Ir)+π(fpmi)
H-1	-5.45	32	19	14	34	$d(Ir)+\pi(fpmi+pyN2)$
H-2	-5.69	11	26	23	40	$d(Ir)+\pi(fpmi+pyN2)$
H-3	-5.90	7	18	11	65	π (fpmi+pyN2)
H-4	-5.94	25	23	44	8	d(Ir)+π(fpmi)
H-5	-6.27	25	43	24	7	d(Ir)+π(fpmi)

^a H = HOMO; L = LUMO. ^b fpmi1 and fpmi2 are the same ligands, but in different positions, Fig. 1. pyN2

= 2-(1*H*-pyrazol-5-yl)pyridinato, Scheme 1.

MOa	En anou/aV		MO comp	b	Assign	
WIO	Energy/ev	Ir	fpmi1	fpmi2	pyN3	Assign
L+5	0.59	6	10	82	1	π*(fpmi)
L+4	0.23	6	79	12	3	π*(fpmi)
L+3	0.05	6	6	87	1	$\pi^*(\text{fpmi2})$
L+2	-0.16	8	85	4	3	$\pi^*(\text{fpmi1})$
L+1	-0.73	1	1	1	97	$\pi^*(\text{pyN3})$
L	-1.23	3	1	1	96	$\pi^*(\text{pyN3})$
Η	-5.34	33	17	47	3	$d(Ir)+\pi(fpmi)$
H-1	-5.65	29	26	22	23	$d(Ir)+\pi(fpmi+pyN3)$
H-2	-5.86	15	28	24	33	$d(Ir)+\pi(fpmi+pyN3)$
H-3	-6.08	22	25	41	12	$d(Ir)+\pi(fpmi+pyN3)$
H-4	-6.33	23	28	17	32	$d(Ir)+\pi(fpmi+pyN3)$
H-5	-6.43	22	23	35	20	$d(Ir)+\pi(fpmi+pyN3)$

Table S3 Frontier molecular orbital energies (eV) and compositions (%) of different fragments in the ground state for complex 3a

^a H = HOMO; L= LUMO. ^b fpmi1 and fpmi2 are the same ligands, but in different positions, Fig. 1. pyN3 = 2-(1H-1,2,4-triazol-5-yl)pyridinato, Scheme 1.

Table S4 Frontier molecular orbital energies (eV) and compositions (%) of different fragments in the ground state for complex 4a

MOa	En anari/aV		MO comp	osition(%)	b	- Assign
MO	Ellergy/ev	Ir	fpmi1	fpmi2	pyN4	Assign
L+4	0.08	6	79	12	3	π*(fpmi)
L+3	-0.09	7	7	86	1	$\pi^*(\text{fpmi2})$
L+2	-0.32	9	84	4	2	$\pi^*(\text{fpmi1})$
L+1	-1.00	1	1	1	97	π* (pyN4)
L	-1.50	3	1	1	96	$\pi^*(pyN4)$
Н	-5.50	31	18	48	3	d(Ir)+π(fpmi)
H-1	-5.87	20	38	37	4	d(Ir)+π(fpmi)
H-2	-6.15	33	34	24	9	d(Ir)+π(fpmi)
H-3	-6.33	27	11	45	17	$d(Ir)+\pi(fpmi+pyN4)$
H-4	-6.54	27	45	20	8	d(Ir)+π(fpmi)
H-5	-6.77	3	3	19	76	π (fpmi2+pyN4)
H-6	-6.83	4	63	25	7	π(fpmi)

^a H = HOMO; L= LUMO. ^b fpmi1 and fpmi2 are the same ligands, but in different positions, Fig. 1. pyN4

= 2-(1*H*-tetrazol-5-yl)pyridinato, Scheme 1.

MOa	EnormulaV		MO con) ^b	- Assign	
WO Energy/CV	Ellergy/ev	Ir	fpmi	pyN1 _a	pyN1 _b	Assign
L+3	-0.29	1	15	3	81	π *(fpmi+pyN1 _b)
L+2	-0.36	1	8	91	1	$\pi^*(pyN1_a)$
L+1	-0.80	4	0	5	91	$\pi^*(pyN1_b)$
L	-0.89	3	1	92	4	$\pi^*(pyN1_a)$
Н	-4.91	3	1	3	93	$\pi(\text{pyN1}_{b})$
H-1	-5.09	2	1	93	4	$\pi(\text{pyN1}_{a})$
H-2	-5.32	31	3	26	40	$d(Ir)+\pi(pyN1)$
H-3	-5.71	26	68	2	4	d(Ir)+π(fpmi)
H-4	-5.93	3	3	54	40	π(pyN1)
H-5	-6.22	39	48	7	7	d(Ir)+π(fpmi)
H-6	-6.53	29	63	6	2	d(Ir)+π(fpmi)

Table S5 Frontier molecular orbital energies (eV) and compositions (%) of different fragments in the ground state for complex 1a'

^a H = HOMO; L = LUMO. ^b $pyN1_a$ and $pyN1_b$ are the same ligands, but in different positions, Fig. 1. pyN1 = 2-(1H-pyrrol-2-yl)pyridinato, Scheme 1.

Table S6 Frontier molecular orbital energies (eV) and compositions (%) of different fragments in the ground state for complex 2a'

MOa	Energy/oV		MO com	position(%)) ^b	– Assign
MO	Ellergy/ev	Ir	fpmi	pyN2 _a	pyN2 _b	Assign
L+6	0.76	15	74	5	6	$d(Ir)+\pi^*(fpmi)$
L+5	0.26	5	91	2	2	π*(fpmi)
L+4	-0.26	7	89	2	3	π*(fpmi)
L+3	-0.46	1	2	7	91	$\pi^*(\text{pyN2}_b)$
L+2	-0.47	1	4	90	6	$\pi^*(pyN2_a)$
L+1	-1.00	4	0	28	68	π *(pyN2)
L	-1.07	3	1	68	28	π* (pyN2)
Н	-5.36	29	3	24	44	$d(Ir)+\pi(pyN2)$
H-1	-5.66	13	15	11	60	$d(Ir)+\pi(fpmi+pyN2)$
H-2	-5.76	12	31	49	9	$d(Ir)+\pi(fpmi+pyN2_a)$
H-3	-5.88	7	30	37	25	π (fpmi+pyN2)
H-4	-6.17	4	5	54	37	π(pyN2)
H-5	-6.30	34	45	10	12	$d(Ir)+\pi(fpmi+pyN2)$
H-6	-6.60	25	62	5	7	$d(Ir)+\pi(fpmi)$

^a H = HOMO; L= LUMO. ^b pyN2_a and pyN2_b are the same ligands, but in different positions, Fig. 1. pyN2

= 2-(1*H*-pyrazol-5-yl)pyridinato, Scheme 1.

MOa	Energy/aV		MO con	nposition(%)) ^b	Assign
MO	Energy/ev	Ir	fpmi	pyN3 _a	pyN3 _b	Assign
L+5	0.02	5	92	2	2	π*(fpmi)
L+4	-0.51	7	89	2	2	π*(fpmi)
L+3	-0.72	1	0	66	32	π *(pyN3)
L+2	-0.74	1	5	30	64	π *(pyN3)
L+1	-1.31	4	0	31	64	π *(pyN3)
L	-1.38	3	1	65	32	π *(pyN3)
Н	-5.79	25	3	23	49	$d(Ir)+\pi(pyN3)$
H-1	-6.03	23	69	5	3	$d(Ir)+\pi(fpmi)$
H-2	-6.13	4	7	53	36	π(pyN3)
H-3	-6.56	32	48	12	8	$d(Ir)+\pi(fpmi+pyN3_a)$
H-4	-6.64	24	8	31	37	$d(Ir)+\pi(pyN3)$
H-5	-6.87	27	62	7	5	d(Ir)+π(fpmi)

Table S7 Frontier molecular orbital energies (eV) and compositions (%) of different fragments in the ground state for complex **3a**'

^a H = HOMO; L= LUMO. ^b pyN3_a and pyN3_b are the same ligands, but in different positions, Fig. 1. pyN3 = 2-(1H-1,2,4-triazol-5-yl)pyridinato, Scheme 1.

Table	S8	Frontier	molecular	orbital	energies	(eV)	and	compositions	(%)	of
differe	different fragments in the ground state for complex 4a'									

MOa	Eporgy/oV		MO con	nposition(%)) ^b	- Assign
MO	Energy/ev	Ir	fpmi	pyN4 _a	pyN4 _b	Assign
L+5	-0.29	4	93	2	1	π*(fpmi)
L+4	-0.83	7	90	1	2	π*(fpmi)
L+3	-1.12	1	1	83	15	π *(pyN4)
L+2	-1.15	0	3	14	82	$\pi^*(\text{pyN4})$
L+1	-1.74	4	0	41	55	π *(pyN4)
L	-1.80	3	1	56	41	$\pi^*(\text{pyN4})$
Н	-6.35	20	74	3	3	d(Ir)+π(fpmi)
H-1	-6.60	37	5	22	37	$d(Ir)+\pi(pyN4)$
Н-2	-6.79	28	34	17	21	d(Ir)+π(fpmi+pyN4)
Н-3	-6.99	7	9	32	52	π(pyN4)
H - 4	-7.04	12	35	24	29	d(Ir)+π(fpmi+pyN4)
Н-5	-7.18	14	7	37	42	$d(Ir)+\pi(pyN4)$

^a H = HOMO; L= LUMO. ^b pyN4_a and pyN4_b are the same ligands, but in different positions, Fig. 1. pyN4 = 2-(1H-tetrazol-5-yl)pyridinato, Scheme 1.

	state	λ/E	f	Configuration ^a	Assignment	Exptl ^b
1a	S_1	347/3.57	0.0908	H→L(81%)	$\pi(\text{pyN1}) \rightarrow \pi^*(\text{pyN1})/\text{IL}$	
	S_3	320/3.88	0.0526	H-2→L(95%)	$d(Ir)+\pi(fpmi+pyN1)\rightarrow\pi^*(pyN1)/MLCT/LLCT/IL$	
	S_4	306/4.05	0.1541	$H\rightarrow L+1(71\%)$	$\pi(\text{pyN1}) \rightarrow \pi^*(\text{pyN1})/\text{IL}$	
	S_7	288/4.31	0.0735	H-1→L+3(26%)	d(Ir)+ π (fpmi+pyN1) $\rightarrow \pi^*$ (fpmi)/MLCT/LLCT/IL	
				H→L+3(18%)	$\pi(\text{pyN1}) \rightarrow \pi^*(\text{fpmi})/\text{LLCT}$	
				H-3→L(18%)	d(Ir)+ π (fpmi+pyN1) $\rightarrow \pi^*$ (pyN1)/MLCT/LLCT/IL	
	S_{10}	285/4.36	0.0702	H-2→L+1(66%)	$d(Ir)+\pi(fpmi+pyN1)\rightarrow\pi^*(pyN1)/MLCT/LLCT/IL$	
	S_{15}	270/4.60	0.0694	H-1→L+4(50%)	$d(Ir)+\pi(fpmi+pyN1)\rightarrow\pi^*(fpmi)/MLCT/LLCT/IL$	
				H→L+4(28%)	$\pi(\text{pyN1}) \rightarrow \pi^*(\text{fpmi})/\text{LLCT}$	
	S_{19}	256/4.84	0.0624	H-3→L+2(47%)	$d(Ir)+\pi(fpmi+pyN1)\rightarrow\pi^*(fpmi)/MLCT/LLCT/IL$	
				H-2→L+4(17%)	d(Ir)+ π (fpmi+pyN1) $\rightarrow \pi$ *(fpmi)/MLCT/LLCT/IL	
	T_1	463/2.68	0.0000	H→L(74%)	$\pi(\text{pyN1}) \rightarrow \pi^*(\text{pyN1})/\text{IL}$	
2a	\mathbf{S}_1	357/3.48	0.0043	H→L(96%)	$d(Ir)+\pi(fpmi)\rightarrow\pi^*(pyN2)/MLCT/LLCT$	379
	S_2	338/3.67	0.0530	H-1→L(93%)	d(Ir)+ π (fpmi+pyN2) $\rightarrow \pi^*$ (pyN2)/MLCT/LLCT/IL	
	S_3	311/3.98	0.0607	H-2→L(85%)	d(Ir)+ π (fpmi+pyN2) $\rightarrow \pi^*$ (pyN2)/MLCT/LLCT/IL	
	S_5	296/4.19	0.0640	H-3→L(45%)	π (fpmi+pyN2) $\rightarrow \pi$ *(pyN2)/LLCT/IL	304
				H→L+2(35%)	$d(Ir)+\pi(fpmi)\rightarrow\pi^*(fpmi1)/MLCT/LLCT/IL$	
	\mathbf{S}_{11}	274/4.53	0.1100	H-2→L+1(70%)	d(Ir)+ π (fpmi+pyN2) $\rightarrow \pi^*$ (pyN2)/MLCT/LLCT/IL	
	S_{15}	262/4.74	0.0641	H-3→L+1(62%)	π (fpmi+pyN2) $\rightarrow \pi$ *(pyN2)/LLCT/IL	
	S_{16}	260/4.77	0.1239	H-2→L+2(50%)	$d(Ir)+\pi(fpmi+pyN2)\rightarrow\pi^*(fpmi1)/MLCT/LLCT/IL$	280
	T_1	417/2.97	0.0000	H-2→L(34%)	d(Ir)+ π (fpmi+pyN2) $\rightarrow \pi^*$ (pyN2)/MLCT/LLCT/IL	432
3a	\mathbf{S}_1	366/3.39	0.0012	H→L(97%)	$d(Ir)+\pi(fpmi)\rightarrow\pi^*(pyN3)/MLCT/LLCT$	
	S_2	338/3.67	0.0660	H-1→L(86%)	d(Ir)+ π (fpmi+pyN3) $\rightarrow \pi^*$ (pyN3)/MLCT/LLCT/IL	
	S_6	292/4.24	0.0560	H-3→L(72%)	d(Ir)+ π (fpmi+pyN3) $\rightarrow \pi^*$ (pyN3)/MLCT/LLCT/IL	
	S_9	279/4.44	0.0612	H-4→L(80%)	d(Ir)+ π (fpmi+pyN3) $\rightarrow \pi^*$ (pyN3)/MLCT/LLCT/IL	
	\mathbf{S}_{13}	265/4.68	0.1405	H→L+4(63%)	$d(Ir)+\pi(fpmi)\rightarrow\pi^*(fpmi)/MLCT/LLCT/IL$	
	\mathbf{S}_{15}	259/4.80	0.1112	H-2→L+2(64%)	d(Ir)+ π (fpmi+pyN3) $\rightarrow \pi^*$ (fpmi1)/MLCT/LLCT/IL	
	T_1	413/3.00	0.0000	H-2→L(25%)	d(Ir)+ π (fpmi+pyN3) $\rightarrow \pi^*$ (pyN3)/MLCT/LLCT/IL	
4 a	\mathbf{S}_1	376/3.30	0.0005	H→L(97%)	$d(Ir)+\pi(fpmi)\rightarrow\pi^*(pyN4)/MLCT/LLCT$	
	S_2	338/3.67	0.0465	H-1→L(87%)	$d(Ir)+\pi(fpmi)\rightarrow\pi^*(pyN4)/MLCT/LLCT$	
	S_6	294/4.22	0.0443	H-3→L(75%)	d(Ir)+ π (fpmi+pyN4) $\rightarrow \pi^*$ (pyN4)/MLCT/LLCT/IL	
	S_{13}	263/4.71	0.2014	H→L+4(45%)	$d(Ir)+\pi(fpmi)\rightarrow\pi^*(fpmi)/MLCT/LLCT/IL$	
				H-6→L(25%)	π (fpmi) $\rightarrow \pi$ *(pyN4)/LLCT	
	S_{16}	257/4.82	0.1255	H-2→L+2(71%)	$d(Ir)+\pi(fpmi) \rightarrow \pi^*(fpmi1)/MLCT/LLCT/IL$	
	T_1	392/3.16	0.0000	H→L(40%)	$d(Ir)+\pi(fpmi)\rightarrow\pi^*(pyN4)/MLCT/LLCT$	

Table S9 Selected calculated wavelength (λ , in nm)/energies (*E*, in eV), oscillator strength (*f*), major contribution and transition characters for the (fpmi)₂Ir(N^N) complexes in CH₂Cl₂ media, along with the experimental data for **2a**

^a H = HOMO; L= LUMO. ^b Experimental data from Ref. 11.

	state	λ/E	f	Configuration ^a	Assignment
1a'	S_1	360/3.44	0.0972	H→L(64%)	$\pi(\text{pyN1}_{b}) \rightarrow \pi^{*}(\text{pyN1}_{a})/\text{LLCT}$
				H→L+1(19%)	$\pi(\text{pyN1}_{b}) \rightarrow \pi^{*}(\text{pyN1}_{b})/\text{IL}$
	S_5	336/3.69	0.0647	H-2→L(82%)	$d(Ir)+\pi(pyN1)\rightarrow\pi^*(pyN1_a)/MLCT/LLCT/IL$
	\mathbf{S}_{10}	302/4.10	0.1320	H→L+3(37%)	$\pi(\text{pyN1}_b) \rightarrow \pi^*(\text{fpmi+pyN1}_b)/\text{LLCT/IL}$
				H-3→L+1(34%)	$d(Ir)+\pi(fpmi)\rightarrow\pi^*(pyN1_b)/MLCT/LLCT$
	\mathbf{S}_{11}	298/4.16	0.1778	H-1→L+2(61%)	$\pi(\text{pyN1}_{a}) \rightarrow \pi^{*}(\text{pyN1}_{a})/\text{IL}$
	S_{19}	281/4.41	0.1384	H-4→L+1(77%)	$\pi(\text{pyN1}) \rightarrow \pi^*(\text{pyN1}_b)/\text{LLCT/IL}$
	S_{22}	273/4.54	0.0911	H-5→L+1(58%)	$d(Ir)+\pi(fpmi)\rightarrow\pi^*(pyN1_b)/MLCT/LLCT$
	S_{29}	254/4.88	0.0935	H-6→L(70%)	$d(Ir)+\pi(fpmi) \rightarrow \pi^*(pyN1_a)/MLCT/LLCT$
	T_1	478/2.59	0.0000	$H\rightarrow L+1(54\%)$	$\pi(\text{pyN1}_{b}) \rightarrow \pi^{*}(\text{pyN1}_{b})/\text{IL}$
2a'	\mathbf{S}_1	356/3.48	0.0607	H→L(97%)	$d(Ir)+\pi(pyN2)\rightarrow\pi^*(pyN2)/MLCT/LLCT/IL$
	S_5	310/4.00	0.0899	H-2→L(89%)	$d(Ir)+\pi(fpmi+pyN2_a)\rightarrow\pi^*(pyN2)/MLCT/LLCT/IL$
	S_6	307/4.04	0.0758	H-2→L+1(88%)	$d(Ir)+\pi(fpmi+pyN2_a)\rightarrow\pi^*(pyN2)/MLCT/LLCT/IL$
	S_{12}	286/4.33	0.0565	H-4→L+1(56%)	$\pi(pyN2) \rightarrow \pi^*(pyN2)/LLCT/IL$
				H-4→L(22%)	$\pi(pyN2) \rightarrow \pi^*(pyN2)/LLCT/IL$
	S_{14}	277/4.47	0.0791	H-1→L+2(52%)	$d(Ir)+\pi(fpmi+pyN2)\rightarrow\pi^*(pyN2_a)/MLCT/LLCT/IL$
				H-1→L+3(26%)	$d(Ir)+\pi(fpmi+pyN2)\rightarrow\pi^*(pyN2_b)/MLCT/LLCT/IL$
	S_{21}	261/4.75	0.1438	H-2→L+2(27%)	$d(Ir)+\pi(fpmi+pyN2_a)\rightarrow\pi^*(pyN2_a)/MLCT/LLCT/IL$
				H→L+6(19%)	$d(Ir)+\pi(pyN2)\rightarrow\pi^*(fpmi)/MLCT/LLCT$
	S_{22}	260/4.77	0.1692	H-6→L(34%)	$d(Ir)+\pi(fpmi)\rightarrow\pi^*(pyN2)/MLCT/LLCT$
				H-2→L+3(24%)	$d(Ir)+\pi(fpmi+pyN2_a)\rightarrow\pi^*(pyN2_b)/MLCT/LLCT$
				H→L+6(22%)	$d(Ir)+\pi(pyN2)\rightarrow\pi^*(fpmi)/MLCT/LLCT$
	T_1	423/2.93	0.0000	H-2→L(17%)	$d(Ir)+\pi(fpmi+pyN2_a)\rightarrow\pi^*(pyN2)/MLCT/LLCT/IL$
				H→L(15%)	$d(Ir)+\pi(pyN2)\rightarrow\pi^*(pyN2)/MLCT/LLCT/IL$
				H-2→L+1(15%)	$d(Ir)+\pi(fpmi+pyN2_a)\rightarrow\pi^*(pyN2)/MLCT/LLCT/IL$
3 a'	S_1	345/3.60	0.0539	H→L(67%)	$d(Ir)+\pi(pyN3)\rightarrow\pi^*(pyN3)/MLCT/LLCT/IL$
				H-1→L(28%)	$d(Ir)+\pi(fpmi)\rightarrow\pi^*(pyN3)/MLCT/LLCT$
	S_3	332/3.74	0.0738	H-1→L(66%)	$d(Ir)+\pi(fpmi)\rightarrow\pi^*(pyN3)/MLCT/LLCT$
				H→L(29%)	$d(Ir)+\pi(pyN3)\rightarrow\pi^*(pyN3)/MLCT/LLCT/IL$
	S_5	304/4.08	0.0495	H-2→L(85%)	$\pi(\text{pyN3}) \rightarrow \pi^*(\text{pyN3})/\text{LLCT/IL}$
	S ₉	282/4.40	0.1516	H→L+2(41%)	$d(Ir)+\pi(pyN3)\rightarrow\pi^*(pyN3)/MLCT/LLCT/IL$
				H-1→L+2(28%)	$d(Ir)+\pi(fpmi)\rightarrow\pi^*(pyN3)/MLCT/LLCT$
				H-3→L+1(20%)	$d(Ir)+\pi(fpmi+pyN3_a)\rightarrow\pi^*(pyN3)/MLCT/LLCT/IL$
	S ₁₃	273/4.54	0.0342	H→L+4(84%)	$d(Ir)+\pi(pyN3)\rightarrow\pi^*(fpmi)/MLCT/LLCT$
	S_{18}	264/4.69	0.0596	H-5→L+1(74%)	$d(Ir)+\pi(fpmi)\rightarrow\pi^*(pyN3)/MLCT/LLCT$
	S_{21}	255/4.86	0.2550	H-2→L+3(68%)	$\pi(\text{pyN3}) \rightarrow \pi^*(\text{pyN3})/\text{LLCT/IL}$
	T_1	417/2.97	0.0000	H→L(18%)	d(Ir)+ π (pyN3) $\rightarrow \pi^*$ (pyN3)/MLCT/LLCT/IL
4a'	S_1	343/3.62	0.0164	H→L(96%)	$d(Ir)+\pi(fpmi)\rightarrow\pi^*(pyN4)/MLCT/LLCT$

Table S10 Selected calculated wavelength (λ , in nm)/energies (*E*, in eV), oscillator strength (*f*), major contribution and transition characters for the (N^N)₂Ir(fpmi) complexes in CH₂Cl₂ media

S_3	313/3.96	0.0727	H-2→L(87%)	d(Ir)+ π (fpmi+pyN4) $\rightarrow \pi^*$ (pyN4)/MLCT/LLCT/IL
S_6	302/4.11	0.0454	H-1→L+1(77%)	$d(Ir)+\pi(pyN4)\rightarrow\pi^*(pyN4)/MLCT/LLCT/IL$
\mathbf{S}_{13}	266/4.67	0.1228	H-4→L+1(58%)	d(Ir)+ π (fpmi+pyN4) $\rightarrow \pi^*$ (pyN4)/MLCT/LLCT/IL
\mathbf{S}_{19}	253/4.91	0.1197	H-1→L+3(44%)	$d(Ir)+\pi(pyN4)\rightarrow\pi^*(pyN4)/MLCT/LLCT/IL$
			H-5→L(30%)	$d(Ir)+\pi(pyN4)\rightarrow\pi^*(pyN4)/MLCT/LLCT/IL$
T_1	389/3.19	0.0000	H-1→L(10%)	$d(Ir)+\pi(pyN4)\rightarrow\pi^*(pyN4)/MLCT/LLCT/IL$
			H→L(9%)	$d(Ir)+\pi(fpmi)\rightarrow\pi^*(pyN4)/MLCT/LLCT$

^a H = HOMO; L= LUMO.

Table S11 Calculated phosphorescent emission of the studied complexes in CH3CN media at TDDFT/M06-2X level of theory (λ , in nm; *E*, in eV)

		5 ()	, , ,	
	λ/E	Configuration ^a	Nature	Exptl ^b
1a	497/2.49	H→L(95%)	IL	
2a	459/2.70	H→L(65%); H-1→L(22%)	MLCT/IL	468
3a	460/2.70	H→L(36%); H-1→L(36%); H-2→L(16%)	MLCT/IL	
4 a	421/2.95	H-3→L(42%); H-2→L(17%); H-4→L(17%)	MLCT/IL	
1a'	462/2.68	H→L(54%); H-1→L+1(32%)	LLCT/IL	
2a'	466/2.66	H→L(87%)	MLCT/IL	
3a'	470/2.64	H→L(86%)	MLCT/IL	
4a'	440/2.82	H-1→L(82%)	MLCT/IL	

^a H = HOMO; L= LUMO. ^b Experimental data from Ref. 11.

Table S12 Calculated phosphorescent emission of the studied complexes in toluene media at TDDFT/M06-2X level of theory (λ , in nm; *E*, in eV)

	λ/E	Configuration ^a	Nature	Exptl ^b
1a	511/2.43	H→L(95%)	IL	
2a	470/2.64	H→L(53%); H-1→L(36%)	MLCT/IL	468
3a	471/2.63	H-1→L(48%); H→L(33%)	MLCT/IL	
4 a	429/2.89	H-3→L(44%); H-2→L(25%)	MLCT/IL	
1a'	485/2.56	$H \rightarrow L+1(34\%); H \rightarrow L(28\%); H-1 \rightarrow L+1(22\%)$	LLCT/IL	
2a'	478/2.59	H→L(89%)	MLCT/IL	
3a'	480/2.58	H→L(89%)	MLCT/IL	
4a'	447/2.77	H-1→L(71%); H→L(20%)	MLCT/IL	

^a H = HOMO; L= LUMO. ^b Experimental data from Ref. 11.

	Ir-C1	Ir-C2	Ir-C3/Ir-N3	Ir-C4/Ir-N4	Ir-N1	Ir-N2
1a	2.023	2.039	2.020	2.065	2.129	3.130
2a	2.019	2.041	2.022	2.058	2.120	3.232
3a	2.023	2.042	2.025	2.056	2.131	3.233
4 a	2.025	2.040	2.028	2.053	2.140	3.294
1a'	2.045	2.059	2.063	2.479	2.014	2.477
2a'	2.021	2.027	2.103	2.473	2.045	2.458
3 a'	2.014	2.011	2.124	2.512	2.058	2.448
4a'	2.008	1.998	2.144	2.526	2.074	2.427

Table S13: Selected bond lengths (in Å) calculated for the studied complexes in themetal-centered (^{3}MC) triplet excited states

Table S14: The xyz coordinates for the optimized structures for **2a** in the S_0 and T_1 states

2a		S ₀			T ₁	
Ir	0.12837900	-0.12331000	0.00747300	0.12436700	-0.12616400	-0.01779900
С	2.12127400	-3.82735800	-0.51539400	2.15065600	-3.82118200	-0.48749200
Н	2.10743700	-4.90193700	-0.64970000	2.13216100	-4.89747500	-0.60908600
С	3.21591500	-2.97154800	-0.44519800	3.23665600	-2.98405200	-0.39133200
Н	4.26664400	-3.21933400	-0.51067300	4.28606200	-3.23818900	-0.41680100
С	2.62482700	-1.71429300	-0.26143700	2.65453300	-1.69430300	-0.24020000
С	3.12840200	-0.37474700	-0.12306800	3.14876000	-0.40174800	-0.06565300
С	4.49027900	-0.03605000	-0.14733600	4.53046400	-0.04791400	-0.03486600
Н	5.22641600	-0.82347800	-0.27213700	5.26330400	-0.84903700	-0.08961300
С	4.87060600	1.28689700	-0.01675700	4.91911600	1.25550400	0.05761600
Н	5.92274000	1.55799100	-0.03517200	5.96713700	1.53359100	0.08492500
С	3.88731400	2.26754500	0.13414600	3.88944000	2.26042200	0.11188700
Н	4.14013600	3.31773200	0.23339300	4.13539700	3.31514400	0.16954800
С	2.56033000	1.87067900	0.15201400	2.55179900	1.87448100	0.09368000
Н	1.74970000	2.58425400	0.26879700	1.76109800	2.61910700	0.14890600
С	-0.02010000	0.33568200	-1.96302000	-0.02521000	0.36926500	-1.98397000
С	-0.19179600	0.61649000	-4.18710900	-0.17310600	0.70770300	-4.20246100
Н	-0.10588200	0.34124400	-5.22710600	-0.07352300	0.46080600	-5.24832300
С	-0.65187000	1.75347700	-3.60728700	-0.64390600	1.82689200	-3.59786700
Н	-1.05233700	2.65305100	-4.04653500	-1.04153400	2.73690400	-4.01763900
С	0.72176700	-1.57426100	-3.36786400	0.74564100	-1.49647300	-3.42830500
Н	0.37839100	-2.22829100	-2.56489300	0.38184400	-2.17620300	-2.65675300

Н	1.81560100	-1.55612500	-3.36301700	1.83907300	-1.47098600	-3.39508400
Н	0.36851000	-1.95406400	-4.32930800	0.42133800	-1.84936300	-4.40995800
С	-0.71502800	1.72961300	0.10173100	-0.74016500	1.71476800	0.10823500
С	-0.91654600	2.36565500	-1.14506900	-0.93904700	2.37479200	-1.12546000
С	-1.42383800	3.64919600	-1.28889600	-1.46298200	3.65433000	-1.24488300
Н	-1.55746100	4.09777500	-2.27002000	-1.59391400	4.12312500	-2.21677400
С	-1.76669500	4.37411600	-0.14923100	-1.82635600	4.34792200	-0.09267000
Н	-2.16943400	5.37924900	-0.21005700	-2.24159600	5.34890000	-0.13435000
С	-1.58184400	3.77133600	1.08467600	-1.64587600	3.71907000	1.12892900
С	-1.07133500	2.48547500	1.22388600	-1.11926700	2.43776600	1.24390900
Н	-0.96584700	2.08234500	2.22748500	-1.01749700	2.01465800	2.23937900
С	-0.08237400	-0.53023700	1.99251500	-0.06199300	-0.52936600	1.96985300
С	-1.29392900	-1.40520700	3.69034100	-1.26197600	-1.37502300	3.68833100
Н	-2.13063500	-1.88926000	4.16757500	-2.08999400	-1.86053600	4.17909900
С	-0.13491200	-0.93114100	4.20972700	-0.10757300	-0.87287800	4.19345300
Н	0.23386500	-0.92558500	5.22386900	0.26168800	-0.83701200	5.20684400
С	1.91345300	0.17740500	3.28950000	1.90977300	0.27749100	3.24485000
Н	2.66870700	-0.49819500	2.87849200	2.63701900	-0.22752500	2.60574700
Н	2.12094700	0.34800600	4.34800000	2.23739100	0.21639000	4.28455100
Н	1.95881500	1.12989300	2.75934200	1.84531200	1.32704500	2.94809200
С	-1.70649100	-0.98511500	0.03410800	-1.70271500	-1.01395600	0.02659000
С	-2.57889200	-1.22192200	-1.03119600	-2.58206700	-1.26948100	-1.02848300
Н	-2.32949900	-0.92555700	-2.04548400	-2.34660000	-0.97145600	-2.04589200
С	-3.79864000	-1.85258000	-0.82191300	-3.78851800	-1.92020300	-0.80388700
С	-4.22218900	-2.27307100	0.42832200	-4.19101200	-2.34248000	0.45299700
Н	-5.18374700	-2.76097000	0.54375600	-5.14271200	-2.84651200	0.58039100
С	-3.37724800	-2.04629900	1.51138900	-3.33961800	-2.09636100	1.52683000
Н	-3.68082700	-2.36561100	2.50493900	-3.62817800	-2.41651700	2.52460300
С	-2.15968200	-1.41708900	1.29759900	-2.13521100	-1.44725100	1.29753700
F	-1.90662800	4.46092800	2.19388800	-1.99175400	4.37775000	2.25007600
F	-4.60458100	-2.06200800	-1.87976500	-4.60207600	-2.14916800	-1.85153100
Ν	1.27545300	-1.88030900	-0.23433700	1.25802600	-1.87414000	-0.27428600
Ν	0.95678100	-3.15411700	-0.38619200	0.95425200	-3.14045500	-0.41159400
Ν	2.18348800	0.59021300	0.03646000	2.14345900	0.61238100	0.03382000
Ν	0.18483600	-0.24042100	-3.16787000	0.19432600	-0.17418900	-3.20119100
Ν	-0.53756900	1.56197900	-2.24796900	-0.54542800	1.59948200	-2.24274600
Ν	-1.24132200	-1.14944900	2.33888900	-1.21365500	-1.15432300	2.33049400
Ν	0.59103800	-0.39566800	3.15971600	0.61380500	-0.36073700	3.12961200

(fpmi)₂Ir(pyim) (2b)

Fig. S1. Schematic structures of (fpmi)₂Ir(pyim) (2b).

Fig. S2. The spin-density contours of the ³MC d-d state for the studied complexes.