Supporting Information

Syntheses of mono- and diacylated bipyrroles with rich substitution modes and development of a prodigiosin derivative as a fluorescent Zn(II) probe

Tao Hong,^{*a*} Heli Song,^{*a*} Xin Li,^{*b*} Weibing Zhang,^{*a*} and Yongshu Xie $*^{a}$

^aKey Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key

Laboratory of Functional Materials Chemistry, East China University of Science and Technology,

Shanghai 200237, P. R. China. ^bDepartment of Theoretical Chemistry and Biology, School of

Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden

E-mail: yshxie@ecust.edu.cn

Contents

C h	a r	a c	t e	r	i z	a	t i	0	n		d a	ı t	a		f	0	r	С	: 0	m	р	0	u	n	d	s	1	~	6	i	a n	d
8~	9	•••					•••							•	•••					•••		•••	•••			Pε	ı g e	e s	S	2~	• S 1	1
Jо	b's	5	p l	0	t,		D	e	t e	r	m	i	n	a	t i	0	n		0	f	K	a	s s	5	f	0	r	9)	w	i t	h
Zn ²	+				•••			•••				•		••					•••		•••							Pa	a g	e s	S 1	12
D	e	t		e		с	1	t	i		0)		n				1		i		m		i		1	t			0)	f
9				••••		•••				•••	••••	••	••••		•••	•••	••••		•••	••••	••••			•••	•••	•••	••••	•••			∙Pa	ge
S															1																	3
Тi	t r	a	t i	i c	o n	l	0)]	f		9		w	, i	i 1	t i	h		Z	n	2	+		i	n	l]	H	E	Р	E	S
buff	er···				•••		•••		•••				•••	•••	• • •			•••	•••		•••			•••	•••				Pa	ıge	S	13

Figure. S1. The ¹H NMR spectrum of **1** in DMSO- d_6 .

Figure S4. The 1 H- 1 H COSY NMR spectrum of **1** (500 MHz in DMSO- d_{6} at 298K).

Figure. S6. The ¹³C NMR spectrum of **2** in DMSO- d_6 .

Figure. S7. ESI-HRMS of 2 in MeOH.

Figure. S8. The 1 H- 1 H COSY NMR spectrum of **2** (500 MHz in DMSO- d_{6} at 298K).

Figure. S9. The ¹H NMR spectrum of **3** in DMSO- d_6 .

Figure. S10. The ¹³C NMR spectrum of **3** in DMSO- d_6 .

Figure. S12. The 1 H- 1 H COSY NMR spectrum of **3** (500 MHz in DMSO- d_{6} at 298K).

Figure. S13. The ¹H NMR spectrum of 4 in DMSO- d_6 .

Figure. S16. The 1 H- 1 H COSY NMR spectrum of **4** (500 MHz in DMSO- d_{6} at 298K).

Figure. S18. The 13 C NMR spectrum of **5** in DMSO- d_6 .

Figure. S19. ESI-HRMS of **5** in MeOH.

Figure. S20. The 1 H- 1 H COSY NMR spectrum of **5** (500 MHz in DMSO- d_{6} at 298K).

Figure. S21. The ¹H NMR spectrum of **6** in DMSO- d_6 .

Figure. S22. The 13 C NMR spectrum of **6** in DMSO- d_6 .

Figure. S24. The 1 H- 1 H COSY NMR spectrum of **6** (500 MHz in DMSO- d_{6} at 298K).

Figure. S25. The ¹H NMR spectrum of **8** in CDCl₃.

Figure. S26. The ¹³C NMR spectrum of **8** in CDCl₃.

Figure. S28. The ¹H NMR spectrum of **9** in DMSO- d_6 .

Figure. S29. The ¹³C NMR spectrum of **9** in DMSO- d_6 .

Figure. S31. Job's plot for determining the stoichiometry of 9 and Zn^{2+} in DMF.

Figure. S32. Plot of F_{622nm} vs. $[Zn^{2+}]$ for **9** in DMF. $\lambda_{ex} = 538$ nm. The best fit line to the equation, superimposed on the data, yields K_{ass} of $1.08 \times 10^7 \text{ M}^{-1}$.

Figure. S33. Calibration curve of probe **9** in DMF, with the fluorescence intensity at 622 nm plotted vs Zn^{2+} concentration. The inset shows the linear responses at low Zn^{2+} concentrations. λ_{ex} was fixed at 538 nm. The detection limit was found to be 1.1×10^{-8} M.

Figure. S34. a) Absorbance changes during the titration of **9** (10 μ M) with Zn²⁺ in the HEPES buffer (DMF/50mM HEPES, 4:1, v:v, pH 7.2). b) Fluorescence changes during the titration of **9** (10 μ M) with Zn²⁺ in the HEPES buffer. Excitation wavelength was fixed at 545 nm (one of the isosbestic points).