Electronic supplementary information for **RSC Advances**

Elastic properties of natural single nanofibers

F.M. Fernandes^{a§*}, L. Vázquez^a, E. Ruiz-Hitzky^a, A. Carnicero^b and M. Castro^c,

^{*a*} Instituto de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la Cruz, 3, 28049 Madrid, Spain

§ F.M.F is presently at the Laboratoire de Chimie de la Matière Condensée de Paris, UPMC Univ. Paris 06, UMR7574, Collège de France. 11 Place Marcelin Berthelot, 75231 Paris cedex 05, France.

E-mail: francisco.fernandes@upmc.fr

^b Departamento de Ingeniería Mecánica and DNL, Universidad Pontificia Comillas, Madrid, Spain.

^cGISC and Grupo de Dinámica No Lineal, Universidad Pontificia Comillas, Madrid, Spain.

Topographic image of deposited fibers	Sample Name	k / Nm ⁻¹	Sensitivity / nmV ⁻¹	Fiber Dimensions / nm	E / GPa
0.19 μm -0.39 μm	S1.Lk	0.76	63.38	x = 616 L = 1488 <r> = 37.8</r>	8.15
0.16 µm -0.32 µm x: 3.0 µm У; 3.0 µm	S2.Lk	0.76	63.38	x = 474 L = 1440 <r> = 51.5</r>	10.32
0.14 µm -0.40 µm	S3.Lk	0.76	63.38	x = 721 L = 1500 <r> = 58.8</r>	4.82
0.09 µm -0.30 µm -0.30 µm	S4.Hk	1.74	64.85	x = 430 L = 916 <r> = 30.0</r>	11.46
0.16 µm -0.40 µm : 6.0 µm	S2.Hk	1.74	64.85	x = 482 L = 1440 <r> = 52.6</r>	8.60
0.14 µm -0.39 µm	S3.Hk	1.74	64.85	x = 721 L = 1500 <r> = 58.8</r>	6.85

Table S1 – Elastic measurements conditions summary.

Model for the bending of a clamped elastic beam

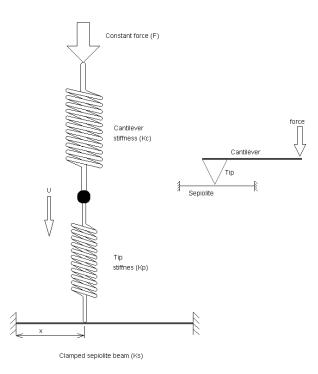


Figure S1. Lumped stiffness model of the tip-clamped sepiolite fiber ensemble.

Figure S1 shows the lumped stiffness model of the tip-fiber group. This model allows to compute the elastic modulus of the sepiolite fiber. In this case, solving the mechanical analogue of the figure, one finds

$$E = \frac{x^{3}(L-x)^{3}}{3I_{o}L^{3}} \left(\frac{K_{p}^{2}}{K_{p} - \frac{F}{U}} - K_{p} \right)$$
(Equation S1)

where L is the length of the clamped fiber, I_o is the moment of inertia of the section, F is the applied constant force, U the measured displacement and K_p is the stiffness of the tip. When the stiffness of the tip is very high (as in this case) this equation reduces to (Equation 1) in the main text.