Electronic Supplementary Information for

A new organic-inorganic hybrid electrolyte based on polyacrylonitrile, polyether diamine and alkoxysilanes for lithium ion batteries: synthesis, structural properties, and electrochemical characterizations

Yu-Chi Pan,^a Diganta Saikia,^a Jason Fang,^b Li-Duan Tsai,^b George T. K. Fey^c and Hsien-Ming Kao*^a

^aDepartment of Chemistry, National Central University, Jhongli, Taiwan 32054, R.O.C.

^bDepartment of Fuel Cell Materials and Advanced Capacitors, Division of Energy Storage Materials and Technology, Material and Chemical Laboratories, Industrial Technology

Research Institute, Hsin-Chu 300, R.O.C.

^cDepartment of Chemical and Materials Engineering, National Central University, Jhongli, Taiwan 32054, R.O.C.

Fig. S1. FTIR spectra of PAGE–x hybrid electrolytes, where x = 15 (a), 18 (b), 21 (c), and 24 (d).

Fig. S2. FTIR deconvolution results of PAGE–*x* hybrid electrolytes in the range of 600–650 cm⁻¹ with various amounts of Li salt, where x = 15 (a), 18 (b), 21 (c), and 24 (d).

Fig. S3. Typical depolarization curve of PAGE–24 hybrid electrolyte.