Supporting Information

Regioselective synthesis of 1,2- and 1,3-diaminothiacalix[4]arenes via nucleophilic aromatic substitution and their X-ray structures

Hiroshi Katagiri, Shinya Tanaka,* Kazuya Ohkubo, Yuki Akahira, Naoya Morohashi, Nobukiho Iki, Tetsutaro Hattori,* Sotaro Miyano

Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-Aoba, Aoba-ku, Sendai 980-8579, Japan

Contents:

Scheme	s S 1······S2
Fig. S1	S2
Fig. S2	
Fig. S3	
Fig. S4	S4
¹ H and	¹³ C NMR spectral charts for compounds synthesized.
1.	Compound 7b
2.	Compound 7c ····· S7
3.	Compound 8
4.	Compound 9b ······S11
5.	Compound 9c
6.	Compound 10b S15
7.	Compound 10c
8.	Compound 5b
9	Compound 5c ······ S21

Scheme S1. Reaction of compound 4(*rtct*) with butyllithium.

Fig. S1. X-ray structure of di(benzylamine) 7c. Hydrogen atoms except for NH and solvent molecules are omitted for clarity.

Fig. S2. X-ray structure of $5b \cdot CH_3CN$: (a) Top view and (b) side view of disordered structure. Protons of the NH₂ and OH groups were not found. Hydrogen atoms are omitted for clarity.

Fig. S3. X-ray structure of $5c \cdot CH_3CN$: (a) Top view and (b) side view of disordered structure. Protons of the NH₂ and OH groups were not found. Hydrogen atoms are omitted for clarity.

Fig. S4. X-ray structure of $5c \cdot CH_3CN$: (a) Top view and (b, c) side views of disordered structure. Protons of the NH₂ and OH groups were not found. Hydrogen atoms are omitted for clarity.

25,27-Di(benzylamino)-26,28-dimethoxy-tetra-*p-tert*-butylsulfinylcalix[4]arene (7b)

*δ*_H (400 MHz) 1.00 [9 H, s, C(CH₃)₃], 1.06 [18 H, s, C(CH₃)₃ × 2], 1.44 [9 H, s, C(CH₃)₃], 3.30 (3 H, s, OCH₃), 3.85 (3 H, s, OCH₃), 4.60 (2 H, dd, *J* 12.7 and 5.66, NHC*H*₂ × 2), 6.17 (2 H, t, *J* 5.66, NHCH₂ × 2), 7.33–7.45 (14 H, m, ArH), 7.83 (2 H, s, ArH) and 8.15 (2 H, s, ArH)

25,27-Di(benzylamino)-26,28-dimethoxy-tetra-*p-tert*-butylsulfinylcalix[4]arene (7b)

 $\delta_{\rm C}$ (100 MHz) 30.72, 30.84, 31.42, 34.06, 34.97, 35.62, 54.34, 61.03, 61.12, 123.12, 125.00, 125.37, 128.03, 128.27, 128.99, 129.25, 130.70, 131.38, 134.73, 137.67, 138.51, 140.97, 145.62, 147.40, 147.90, 149.03 and 149.88

25,26-Di(benzylamino)-27,28-dimethoxy-tetra-*p-tert*-butylsulfinylcalix[4]arene (7c)

*δ*_H (400 MHz) 0.59 [9 H, s, C(CH₃)₃], 1.05 [9 H, s, C(CH₃)₃], 1.25 [9 H, s, C(CH₃)₃], 1.41 [9 H, s, C(CH₃)₃], 3.49 (3 H, s, OCH₃), 3.54-3.57 (1 H, m, ArNHC*H*₂), 4.08 (3 H, s, OCH₃), 4.29 (1 H, t, *J* 10.1 Hz, N*H*CH₂), 4.34-4.40 (1 H, m, NHC*H*₂), 4.68-4.70 (2 H, m, NHC*H*₂), 6.65 (1 H, br, N*H*CH₂), 6.93 (1 H, d, *J* 2.3, ArH), 7.29-7.43 (8 H, m, ArH), 7.48-7.50 (2 H, m, ArH), 7.58-7.60 (2 H, m, ArH), 7.81 (1 H, d, *J* 2.3 Hz, ArH), 7.86 (1 H, d, *J* 2.4, ArH), 8.03 (1 H, d, *J* 2.3, ArH), 8.05 (1 H, d, *J* 2.4, ArH) and 8.12 (1 H, d, *J* 2.4, ArH)

25,26-Di(benzylamino)-27,28-dimethoxy-tetra-*p-tert*-butylsulfinylcalix[4]arene (7c)

δ_C (100 MHz) 30.51, 30.75, 31.01, 31.37, 33.56, 34.57, 35.19, 35.66, 54.54, 56.15, 61.32, 63.29, 122.30, 123.83, 123.91, 124.34, 125.04, 125.67, 127.84, 127.91, 128.26, 128.87, 128.94, 129.11, 129.41, 130.00, 130.67, 131.90, 133.89, 136.01, 136.05, 137.65, 137.78, 138.41, 138.83, 139.25, 139.94, 144.45, 144.54, 146.25, 148.13, 149.66, 149.71 and 151.48

4-tert-Butyl-2-(butylsulfinyl)-1-methoxybenzene (8)

*δ*_H (400 MHz) 0.93 (3 H, t, *J* 7.3 Hz, -CH₂CH₂CH₂CH₃), 1.34 [9 H, s, C(CH₃)₃], 1.39-1.52 (2 H, m, -CH₂CH₂CH₂CH₃), 1.58-1.67 (1 H, m, -CH₂CH₂CH₂CH₃), 1.80-1.91 (1 H, m, -CH₂CH₂CH₂CH₃), 2.69-2.76 (1 H, m, -CH₂CH₂CH₂CH₃), 3.01-3.08 (1 H, m, -CH₂CH₂CH₂CH₃), 3.86 (3 H, s, -OCH₃), 6.85 (1 H, d, *J* 8.6 Hz, ArH), 7.43 (1 H, dd, *J* 8.6 and 2.4 Hz, ArH) and 7.80 (1 H, d, *J* 2.4 Hz, ArH)

4-tert-Butyl-2-(butylsulfinyl)-1-methoxybenzene (8)

δ_C (125 MHz) 13.77, 21.98, 24.39, 31.52, 34.74, 53.84, 55.83, 110.30, 122.19, 128.51, 130.59, 144.87 and 152.84

25,27-Diamino-26,28-dimethoxy-tetra-*p-tert*-butylsulfinylcalix[4]arene (9b)

 $\delta_{\rm H}$ (500 MHz) 1.03 [18 H, s, C(CH₃)₃ × 2], 1.45 [18 H, s, C(CH₃)₃ × 2], 3.72 (6 H, s, OCH₃ × 2), 5.23 (4 H, s, NH₂ × 2), 7.24 (4 H, s, ArH × 2) and 8.16 (4 H, s, ArH × 2)

25,27-Diamino-26,28-dimethoxy-tetra-*p-tert*-butylsulfinylcalix[4]arene (9b)

δ_C (125 MHz) 30.84, 31.34, 33.99, 35.51, 61.53, 124.72, 126.66, 128.62, 135.93, 140.52, 143.71, 148.17 and 148.65

25,26-Diamino-27,28-dimethoxy-tetra-*p-tert*-butylsulfinylcalix[4]arene (9c)

 $\delta_{\rm H}$ (400 MHz, [²H₂]-1,1,2,2-tetrachloroethane, 383 K): 1.18 [18 H, s, C(CH₃)₃ × 2], 1.25 [18 H, s, C(CH₃)₃ × 2], 3.90 (6 H, s, OCH₃ × 2), 5.01 (4 H, s, NH₂ × 2), 7.45 (2 H, d, *J* 2.2 Hz, ArH), 7.52 (2 H, br s, ArH), 7.75 (2 H, d, *J* 2.2 Hz, ArH) and 7.91 (2 H, d, *J* 2.2 Hz, ArH)

25,26-Diamino-27,28-dimethoxy-tetra-*p-tert*-butylsulfinylcalix[4]arene (9c)

 $\delta_{\rm C}$ (100 MHz, [²H₂]-1,1,2,2-tetrachloroethane, 383 K): 31.13, 31.18, 34.23, 35.39, 62.99, 124.53, 124.65, 125.15, 127.24, 127.58, 128.80, 137.41, 138.92, 140.38, 142.86, 149.79 and 150.02

25,27-Diamino-26,28-dihydroxy-tetra-*p-tert*-butylsulfinylcalix[4]arene (10b)

25,27-Diamino-26,28-dihydroxy-tetra-*p-tert*-butylsulfinylcalix[4]arene (10b)

 $\delta_{\rm C}$ (100 MHz, [²H₆]DMSO, 353K) δ (ppm): 30.24, 30.62, 33.27, 34.13, 122.93, 126.64, 127.66, 131.73, 138.55, 141.93, 142.90, 142.90 and 147.05

nac

я

25,26-Diamino-27,28-dihydroxy-tetra-*p-tert*-butylsulfinylcalix[4]arene (10c)

 $\delta_{\rm H}$ (400 MHz, [²H₆]DMSO, 373 K) δ (ppm): 1.08 [18 H, s, C(CH₃)₃ × 2], 1.25 [18 H, s, C(CH₃)₃ × 2], 6.72 (6 H, br, NH₂ × 2 and OH × 2), 7.34 (2 H, br, ArH), 7.46 (2 H, d, *J* 2.3 Hz, ArH), 7.56 (2 H, d, *J* 2.5 Hz, ArH) and 7.71 (2 H, d, *J* 2.5 Hz, ArH)

ŝ

ż

5

25,26-Diamino-27,28-dihydroxy-tetra-*p-tert*-butylsulfinylcalix[4]arene (10c)

 $\delta_{\rm C}$ (100 MHz, [²H₆]DMSO, 373 K) δ (ppm): 30.11, 30.53, 33.34, 33.83, 121.64, 121.86, 124.29, 125.26, 126.27, 132.34, 132.70, 139.08, 140.77, 142.77, 142.98, 145.80 and 151.21

25,27-Diamino-26,28-dihydroxy-tetra-*p-tert*-butythiacalix[4]arene (5b)

 $\delta_{\rm H}$ (400 MHz) 1.13 [18 H, s, C(CH₃)₃ × 2] , 1.25 [18 H, s, C(CH₃)₃ × 2] , 7.49 (4 H, s, ArH × 2) and 7.61 (4 H, s, ArH × 2)

	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	<u> </u>		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · ·	1
ppm	8	7	6	5	1 3	3	2	1	ó

25,27-Diamino-26,28-dihydroxy-tetra-*p-tert*-butythiacalix[4]arene (5b)

 $\delta_{\rm C}$ (100 MHz) 31.05, 31.39, 34.04, 34.14, 121.60, 123.89, 134.79, 135.41, 142.85, 145.31, 146.42 and 157.21

25,26-Diamino-27,28-dihydroxy-tetra-*p-tert*-butythiacalix[4]arene (5c)

 $\delta_{\rm H}$ (400 MHz) 1.14 [18 H, s, C(CH₃)₃ × 2], 1.20 [18 H, s, C(CH₃)₃ × 2], 6.32 (6 H, br, NH₂ × 2 and OH × 2), 7.39 (2 H, d, *J* 2.3 Hz, ArH), 7.47 (2 H, d, *J* 2.3 Hz, ArH), 7.49 (2 H, d, *J* 2.5 Hz, ArH), and 7.54 (2 H, d, *J* 2.5 Hz, ArH)

25,26-Diamino-27,28-dihydroxy-tetra-*p-tert*-butythiacalix[4]arene (5c)

δ_C (100 MHz) 31.16, 31.24, 33.95, 34.09, 119.75, 120.12, 120.61, 120.99, 134.15, 134.23, 134.42, 134.77, 142.58, 143.69, 146.70 and 155.38

