An efficient facile one-pot multicomponent synthesis of diazepines and benzimidazole using magnetically retrievable Fe₃O₄ nanocatalyst under solvent free condition

Ramen Jamatia^a, Mithu Saha^a, Amarta Kumar Pal^{a*}

^aDepartment of Chemistry, North-Eastern Hill University, Mawlai Campus, Shillong

793022, India.

Tel: +91 364 2307930 ext 2636, E-mail: <u>amartya_pal22@yahoo.com</u>, <u>akpal@nehu.ac.in</u> Fax: +91 364 2550076

	Table of content	Page No.
1.	Experimental Section	2-3
2.	Table S.I. 1. X-ray crystallography data for compound 3b	4
3.	Spectral data of the compound 3a-h and 5a-f	5-10
4.	Fig. S.I. 1. I.R spectra of Fe ₃ O ₄ NPs	11
5.	¹ H & ¹³ C NMR Spectra of compounds 3a-h and 5a-f	12-30

1. Experimental Section

Melting points were determined in open capillaries and are uncorrected. IR spectra were recorded on Spectrum BX FT-IR, Perkin Elmer (v_{max} in cm⁻¹) on KBr disks. ¹H NMR and ¹³C NMR (400/300 MHz and 100/75 MHz respectively) spectra were recorded on Bruker Avance II-400 and 300 spectrometer in CDCl₃ (chemical shifts in δ with TMS as internal standard). Mass spectra were recorded on Waters ZQ-4000. Transmission Electron Microscope (TEM) was recorded on JEOL JSM 100CX. Scanning electron microscope (SEM) was recorded on JSM-6360 (JEOL). XRD was recorded on Bruker D8 XRD instrument SWAX .CHN were recorded on CHN-OS analyzer (Perkin Elmer 2400, Series II). Silica gel G (E-mark, India) was used for TLC. Hexane refers to the fraction boiling between 60 °C and 80 °C. Absorption spectra were recorded in Lambda25 (PerkinElmer Inc.) spectrometers.

X-ray crystallography

The X-ray diffraction data were collected at 293 K with Mo K α radiation ($\lambda = 0.71073$ Å) using Agilent Xcalibur (Eos, Gemini) diffractometer equipped with a graphite monochromator. The software used for data collection CrysAlis PRO (Agilent, 2011), data reduction CrysAlis PRO and cell refinement CrysAlis PRO. The structure were solved by direct methods and refined by full-matrix least-squares calculation using SHELXS-97 and SHELXL-97 (CCDC 933681). Absorption spectra were recorded in Lambda25 (PerkinElmer Inc.) spectrometers.

General procedure for 3a-h.

Fe₃O₄ (6 mol %) was added to a mixture of *o*-phenylenediamine **1** (1mmol) and acetophenone **2a-h** (2.2 mmol) and heated at 80 °C under solvent free condition. After completion of the reaction, monitored by TLC, the reaction mixture was cooled to room temperature and dissolved in 10 mL ethyl acetate. The Fe₃O₄ NPs was then separated by external magnetic field. The separated Fe₃O₄ NPs was washed with ethyl acetate and dried. Then it was used for another set of reaction under similar condition. The reaction mixture was then washed with water (3×5 mL), brine (1×5 mL) and dried over anhydrous Na₂SO₄. The reaction mass was concentrated under vacuum and the pure product was obtained by purification through column chromatography using ethyl acetate: hexane as eluent.

General procedure for 5a-h.

In a round bottom flask, *o*-phenylenediamine **1** (1mmol) and aldehyde **4a-f** (2.2 mmol), was taken and Fe₃O₄ NPs (6 mol %) was added. The reaction was carried out at 80 °C under solvent free condition. After completion (TLC), the reaction mixture was cooled to room temperature and dissolved in 10 mL ethyl acetate. The Fe₃O₄ NPs was then separated by external magnetic field and washed with ethyl acetate and dried. The separated Fe₃O₄ NPs was then used for another set of reaction under similar condition. The reaction mixture was then washed with water (3 × 5mL), brine (1 × 5 mL) and dried over anhydrous Na₂SO₄. The reaction mass was concentrated under vacuum. The crude mixture was purified by column chromatography using ethyl acetate: hexane as eluent.

Empirical formula	$C_{22}H_{18}Cl_2N_2$
Formula weight	381.28
Crystal system	Monoclinic
Space group	$P2_1/n$
$a(\text{\AA})$	14.0976(12)
$b(\text{\AA})$	10.0170(7)
c(Å)	14.9301(13)
$\alpha(\circ)$	90.00
β(°)	116.746(11)
$\gamma(\circ)$	90.00
Volume (Å)	1882.8(3)
ρ (calculated) (g cm ⁻³)	1.345
T(K)	293(2)
Absorption coefficient (mm ⁻¹)	0.353
Total reflection collected	9789
Independent reflection	4403
Refine parameter	336
θ range (°)	6.6 to 58.22
Final R Indexes $[1 \ge 2\sigma(I)]$	R1 = 0.0548, WR2 = 0.1174
Final R indexes [all data]	R1 = 0.0979, wR2 = 0.1375
Goodness-of-fit on F ²	1.018

 Table S.I.1. X-ray crystallography data for compound 3b.

SPECTRAL DATA

1. Compound 3a

White solid. IR (KBr): 3281, 3066, 1635, 1468 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.53$ (t, J = 7.6 Hz, 4H), 7.26-7.08 (m, 7H), 7.03-6.95 (m, 2H), 6.78-6.76 (dd, J = 7.6, 1.2 Hz, 1H), 3.4 (brs, 1H), 3.08 (d, J = 13.2 Hz, 1H), 2.92 (d, J = 13.2 Hz, 1H), 1.68 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 167.7$, 147.6, 140.1, 139.5, 138.1, 129.7, 128.6, 128.3, 128.0, 127.1, 126.3, 125.4, 121.6, 121.4, 73.7, 43.1, 29.8. ESI- MS: m/z 313 [M + H]⁺. Anal. Cacld for C₂₂H₂₀N₂: C, 84.58; H, 6.45; N, 8.97. Found: C, 84.47; H, 6.39; N, 8.80.

2. Compound 3b

Yellow solid. IR (KBr): 3496, 3025, 1686, 1493, 751 cm⁻¹. ¹H NMR (CDCl₃, 300 MHz): $\delta = 7.51-7.45$ (m, 4H), 7.30-7.25 (m, 1H), 7.20-7.17 (m, 4H), 7.07-7.01 (m, 2H), 6.82-6.76 (m, 1H), 3.41 (s, 1H), 3.07 (d, J = 13.3 Hz, 1H), 2.88 (d, J = 13.5, 1H), 1.71 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 166.1$, 145.7, 139.8, 137.6, 136.1, 133.0, 128.5, 128.38, 128.31, 127.0, 126.6, 122.0, 121.5, 73.5, 42.9, 29.7. ESI- MS: m/z 381, 383 [M + H]⁺. Anal. Cacld for C₂₂H₁₈Cl₂N₂: C, 69.30; H, 4.76; N, 7.35. Found: C, 69.53; H, 4.64; N, 7.44.

3. Compound 3c

Orange solid. IR (KBr): 3278, 3088, 1604, 1473, 1349 cm⁻¹. ¹H NMR (CDCl₃, 300 MHz): $\delta = 8.47$ (s, 1H), 8.16 (s, 1H), 8.12 (d, J = 8.1 Hz, 1H), 7.99-7.96 (m, 3H), 7.42-7.32 (m, 3H), 7.18-7.08 (m, 2H), 6.93-6.91 (dd, J = 7.5 Hz, 1.2 Hz, 1H), 3.55 (s, 1H), 3.28 (d, J = 13.5 Hz, 1H), 3.02 (d, J = 13.5, 1H), 1.87 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 164.1$, 149.0, 148.1, 148.0, 140.4, 139.2, 137.1, 132.5, 131.9, 129.5, 129.2, 128.9, 127.4, 124.4, 122.4, 122.2, 121.6, 120.8, 74.1, 42.8, 29.9. ESI- MS: m/z 403 [M + H]⁺. Anal. Cacld for C₂₂H₁₈N₄O₄: C, 65.66; H, 4.51; N, 13.92. Found: C, 65.61; H, 4.62; N, 13.80.

4. Compound 3d

Pale brown solid. IR (KBr): 3370, 2979 cm⁻¹. ¹H NMR (CDCl₃, 300 MHz): $\delta = 7.46-7.27$ (m, 9H), 7.11-7.01 (m, 2H), 6.83-6.80 (m, 1H), 3.42 (s, 1H), 3.07 (d, J = 13.2 Hz, 1H), 2.89 (d, J = 13.2 Hz, 1H), 1.72 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 166.2$, 146.5, 140.0, 138.3, 137.7, 131.5, 131.4, 128.8, 128.7, 127.6, 126.8, 124.7, 122.2, 121.7, 121.4, 73.7, 43.0, 29.9. ESI-MS: m/z 469, 471 [M + H]⁺. Anal. Cacld for C₂₂H₁₈Br₂N₂: C, 56.20; H, 3.86; N, 5.96. Found: C, 56.12; H, 3.88; N, 5.77.

5. Compound 3e

Orange solid. IR (KBr): 3310, 3071, 1606, 1348 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.00$ (d, J = 8.8 Hz, 4H), 7.69 (d, J = 8.8 Hz), 7.62 (d, J = 8.8 Hz, 2H), 7.28 (d, J = 7.2 Hz, 1H), 7.11-7.09 (m, 1H), 7.08-7.00 (m, 1H), 6.84 (d, J = 7.6 Hz, 1H), 3.58 (s, 1H), 3.24 (d, J = 13.2 Hz, 1H), 2.95 (d, J = 13.6, 1H), 1.77 (s, 3H). ESI- MS: m/z 403 [M + H]⁺. Anal. Cacld for C₂₂H₁₈N₄O₄: C, 65.66; H, 4.51; N, 13.92. Found: C, 65.38; H, 4.46; N, 13.79.

6. Compound 3f

Orange solid. IR (KBr): 3319, 3023, 1600, 1463 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ = 7.50-6.74 (m, 12H), 3.44 (brs, 1H), 3.02 (d, *J* = 13.2 Hz, 1H), 2.92 (d, *J* = 13.2 Hz, 1H), 2.26 (s, 3H), 2.33 (s, 3H), 1.65 (s, 3H). ESI- MS: *m/z* 341 [M + H]⁺. Anal. Cacld for C₂₄H₂₄N₂: C, 84.67; H, 7.11; N, 8.23. Found: C, 84.71; H, 6.97; N, 8.44.

7. Compound 3g

Orange solid. IR (KBr): 3321, 1606, 1467, 1245, 1030 cm⁻¹. ¹H NMR (CDCl₃, 300 MHz): $\delta = 7.60$ (d, J = 8.7 Hz, 2H), 7.53 (d, J = 8.7 Hz, 2H), 7.30-7.26 (m, 1H), 7.05-7.02 (m, 2H), 6.81-6.74 (m, 5H), 3.79 (s, 3H), 3.75 (s, 3H), 3.41 (s, 1H), 3.06 (d, J = 12.9 Hz, 1H), 2.92 (d, J = 13.2 Hz, 1H), 1.71 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 167.3$, 161.2, 158.7, 140.8, 140.2, 138.2, 132.4, 129.0, 128.3, 126.7, 126.0, 121.9, 121.7, 113.7, 113.5, 73.5, 55.49, 55.47, 43.0, 29.9. ESI-MS: m/z 373 [M + H]⁺. Anal. Cacld for C₂₄H₂₄N₂O₂: C, 77.39; H, 6.49; N, 7.52. Found: C, 77.57; H, 6.37; N, 7.64.

8. Compound 3h

Pale brown solid. IR (KBr): 3283, 1467, 1639 cm⁻¹. ¹H NMR (CDCl₃, 300 MHz): δ = 7.14-7.11 (m, 1H), 7.01-6.97 (m, 2H), 6.75-6.72 (m, 1H), 2.97 (brs, 1H), 2.37 (s, 3H), 2.22 (s, 2H), 1.35 (s, 6H). ESI- MS: *m/z* 189 [M + H]⁺. Anal Cacld for C₁₂H₁₆N₂: C, 76.55; H, 8.57; N, 14.88. Found: C, 76.82; H, 8.70; N, 14.83.

9. Compound 5a

Pale white solid. IR (KBr): 3083, 3029, 2957, 1611, 1276 cm⁻¹. NMR (CDCl₃, 300 MHz): $\delta = 7.83$ (d, J = 8 Hz, 1H), 7.63 (d, J = 6.8 Hz, 2H), 7.40-7.05 (m, 9H), 5.40 (s, 2H). ESI-MS: m/z 285 [M + H]⁺. Anal. Calcd for C₂₀H₁₆N₂: C, 84.48; H, 5.67; N, 9.85. Found: C, 84.37; H, 5.55; N, 9.68.

10. Compound 5b

Pale white solid. IR (KBr): 3075, 2928, 2852, 1611, 1250, 744 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.81$ (d, J = 7.6 Hz, 1H), 7.53 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.29-7.19 (m, 4H), 7.14 (d, J = 8 Hz, 1H), 6.96 (d, J = 8 Hz, 2H), 5.33 (s, 2H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 152.8$, 142.9, 136.3, 135.8, 134.6, 133.8, 130.4, 129.3, 129.1, 128.2, 127.2, 123.5, 123.1, 120.1, 110.3, 47.8. ESI- MS: m/z 353, 355 [M + H]⁺. Anal. Calcd for C₂₀H₁₄ Cl₂N₂: C, 68.00; H, 3.99; N, 7.93. Found: C, 68.21; H, 4.03; N, 7.82.

11. Compound 5c

White solid. IR (KBr): 3073, 2924, 2857, 1607, 1281 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.86$ (d, J = 7.9 Hz, 1H), 7.59 (d, J = 8.1 Hz, 2H), 7.32-7.20 (m, 5H), 7.14 (d, J = 7.9 Hz, 2H), 7.01 (d, J = 7.9 Hz, 2H), 5.41 (s, 2H), 2.40 (s, 3H), 2.33 (s, 3H). ESI- MS: m/z 313 [M + H]⁺. Anal. Calcd for C₂₂H₂₀N₂: C, 84.58; H, 6.45; N, 8.97. Found: C, 84.78; H, 6.31; N, 8.70.

12. Compound 5d

Pale white solid. IR (KBr): 3072, 2928, 2851, 1610, 1251, 617 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.81$ (d, J = 8 Hz, 1H), 7.60-7.56 (m, 2H), 7.29-7.07 (m, 5H), 6.97-6.93 (m, 4H), 5.34 (s, 2H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 152.8$, 142.9, 135.8, 135.1, 132.3, 132.1, 130.6, 128.7, 127.5, 124.7, 123.5, 123.1, 121.9, 120.1, 110.3, 47.8. ESI- MS: *m/z* 441, 443 [M + H]⁺. Anal. Calcd for C₂₀H₁₄Br₂N₂: C, 54.33; H, 3.19; N, 6.34. Found: C, 54.25; H, 3.25; N, 6.17.

13. Compound 5e

Yellow solid. IR (KBr): 3050, 2923, 2871, 1624, 1243 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.83$ (d, J = 8 Hz, 1H), 7.55(d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.4Hz, 2H), 7.41 (d, J = 8.4 Hz, 2H), 7.30-7.19 (m, 2H), 7.14 (d, J = 8 Hz, 1H), 6.90 (d, J = 8 Hz, 2H), 5.32 (s, 2H). ESI- MS: *m/z* 321 [M + H]⁺ Anal. Calcd for C₂₀H₁₄ F₂N₂: C, 74.99; H, 4.41; N, 8.75. Found: C, 75.23; H, 4.29; N, 8.72.

14. Compound 5f

Pale white solid. IR (KBr): 3063, 2936, 2838, 1604, 1246, 1110 cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.80$ (d, J = 8 Hz, 1H), 7.48 (d, J = 7.2 Hz, 1H), 7.41 (t, J = 7.8 Hz, 1H), 7.22-7.10 (m, 4H), 7.00 (t, J = 7.6 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 6.77 (d, J = 8 Hz, 1H), 6.70 (t, J = 7.6 Hz, 1H), 6.63 (d, J = 7.2 Hz, 1H), 5.17 (s, 2H), 3.70 (s, 3H), 3.52 (s, 3H). ESI- MS: *m/z* 345 [M + H]⁺. Anal. Calcd for C₂₂H₂₀N₂O₂: C, 76.72; H, 5.85; N, 8.13. Found: C, 76.83; H, 5.81; N, 7.93.

1. Compound 3a

¹H NMR Spectra of Compound 3a

¹³C NMR Spectra of Compound 3a

2. Compound 3b

¹H NMR Spectra of Compound 3b

3. Compound 3c

¹H NMR Spectra of Compound 3c

4. Compound 3d

¹H NMR Spectra of Compound 3d

¹³C NMR Spectra of Compound 3d

5. Compound 3e

¹H NMR Spectra of Compound 3e

6. Compound 3f

¹H NMR Spectra of Compound 3f

7. Compound 3g

¹H NMR Spectra of Compound 3g

¹³C NMR Spectra of Compound 3g

8. Compound 3h

¹H NMR Spectra of Compound 3h

9. Compound 5a

¹H NMR Spectra of Compound 5a

10. Compound 5b

¹H NMR Spectra of Compound 5b

¹³C NMR Spectra of Compound 5b

11. Compound 5c

¹H NMR Spectra of Compound 5c

12. Compound 5d

¹H NMR Spectra of Compound 5d

¹³C NMR Spectra of Compound 5d

13. Compound 5e

¹H NMR Spectra of Compound 5e

14. Compound 5f

¹H NMR Spectra of Compound 5f