Supplementary Information

Facile hydrothermal synthesis and electrochemical properties of orthorhombic

LiMnO₂ cathode materials for rechargeable lithium batteries

Shulin Chen¹, Feifei Cao², Fan Liu¹, Quanjun Xiang¹, Xionghan Feng¹, Lihu Liu¹, Guohong Qiu*,¹

¹ College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, P. R.

China

²College of Sciences, Huazhong Agricultural University, Wuhan, 430070, P. R. China

* Corresponding author: G.H. Qiu, qiugh@mail.hzau.edu.cn, Tel/Fax: +86(0)27 87280271

Figure captions

Fig. S1. XRD patterns of products synthesized in 0.1 mol L⁻¹ MnCl₂, 0.6 mol L⁻¹ LiOH, 0.1 mol/L NaClO with (a) and without (b) EDTA (0.1 mol L⁻¹) at 180 °C for 24 h.

Fig. S2. XRD patterns of the synthesized pure-phased and aluminum-doped *o*-LiMnO₂: (a) M_0 , (b) M_3 , (c) M_6 , (d) M_9 , and (e) M_{12} .

Fig. S3. Particle size distributions of M_0 (a), M_m (b), M_3 (c), M_6 (d), M_9 (e) and M_{12} (f).

Fig. S4. TEM images of M₀ (a), M₃ (b), M₆ (c), M₉ (d), M₁₂ (e).

Fig. S5. XRD patterns of products synthesized under different conditions: (a) 0.1 mol L⁻¹ MnCl₂, 0.6 mol L⁻¹ LiOH, 0.1 mol L⁻¹ NaClO, 0.1 mol L⁻¹ EDTA, 180 °C, 24 h; (b) heat treatment of (a) in air at 300 °C for 2 h; (c) heat treatment of (a) in air at 600 °C for 2 h.

Fig. S6. Discharge specific capacities *vs*. cycle number with current density of 100 mA g⁻¹ for M_0 , M_m , and M_{600} after heat-treatment at 110 °C for 12 h.

1. The effect of EDTA on product composition

Fig. S1. XRD patterns of products synthesized in 0.1 mol L^{-1} MnCl₂, 0.6 mol L^{-1} LiOH, 0.1 mol/L NaClO with (a) and without (b) EDTA (0.1 mol L^{-1}) at 180 °C for 24 h.

2. The preparation of Al doped *o*-LiMnO₂

Fig. S2. XRD patterns of the synthesized purephased and aluminum-doped *o*-LiMnO₂: (a) M₀, (b) M₃, (c) M₆, (d) M₉, and (e) M₁₂.

3. The particle size distributions of the as-obtained samples

Fig. S3. Particle size distributions of M_0 (a), M_m (b), M_3 (c), M_6 (d), M_9 (e) and M_{12} (f).

4. The micromorphology and particle size of pure and Al doped o-LiMnO₂

Fig. S4. TEM images of M_0 (a), M_3 (b), M_6 (c), M_9 (d), M_{12} (e).

5. The heat treatment of as-obtained o-LiMnO₂ in air

Fig. S5. XRD patterns of products synthesized under different conditions: (a) 0.1 mol L⁻¹ MnCl₂, 0.6 mol L⁻¹ LiOH, 0.1 mol L⁻¹ NaClO, 0.1 mol L⁻¹ EDTA, 180 °C, 24 h; (b) heat treatment of (a) in air at 300 °C for 2 h; (c) heat treatment of (a) in air at 600 °C for 2 h.

6. The electrochemical performance of the as-obtained o-LiMnO₂ and LiMn₂O₄

Fig. S6. Discharge specific capacities *vs.* cycle number with current density of 100 mA g⁻¹ for M_0 , M_m , and M_{600} after heat-treatment at 110 °C for 12 h.