Supplementary Informations

The stereochemistry of two monoterpenoid diastereomers from Ferula

dissecta

Zhi-Qiang Wang, ^{*a*} Chao Huang, ^{*a*} Jian Huang, ^{*a*} Hong-Ying Han, ^{*b*} Guo-Yu Li, ^{*b*} Jin-Hui Wang, ^{*a*} Tie-Min Sun ^{*a*}.*

*E-mail:suntiemin@126.com

^a Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education. Shenyang 110016, PR China

^b School of Pharmacy, Shihezi University, Shihezi 832002, China

List of supplementary informations

Contents:	Page:
General experimental procedures	S2
Fig. S1 CD spectrum of 1	S2
Fig. S2 IR spectrum of 1	S2
Fig. S3 ¹ H-NMR spectrum of 1	S3
Fig. S4 ¹³ C-NMR spectrum of 1	S3
Fig. S5 HR-EI-MS spectrum of 1	S4
Fig. S6 HMBC spectrum of 1	S4
Fig. S7 NOSEY spectrum of 1	S5
Fig. S8 Enlarged NOSEY spectra of 1 (part 1)	S6
Fig. S9 Enlarged NOSEY spectra of 1 (part 2)	S7
Fig. S10 UV of 2	S8
Fig. S11 CD spectrum of 2	S8
Fig. S12 IR spectrum of 2	S8
Fig. S13 ¹ H-NMR spectrum of 2	S9
Fig. S14 ¹³ C-NMR spectrum of 2	S9
Fig. S15 HR-EI-MS spectrum of 2	S10
Fig. S16 NOSEY spectrum of 2	S11
Fig. S17 Enlarged NOSEY spectrum of 2	S12
Fig. S18 Enlarged NOSEY spectrum of 2	S13
Fig. S19 CD spectrum of 5	S14
Fig. S20 ¹ H-NMR of 5	S14
Fig. S21 CD spectrum of 6	S15
Fig. S22 ¹ H-NMR of 6	S15
Fig. S23 Calculated ECD of 1 and 2 using different basic sets	S16
Fig. S24 The HOMO, LUMO, HOMO-1 and LUMO + 1 orbitals of 1	S16
Synthesis of 5 and 6	S16
Cytotoxity assay and computational details	S17
Table S1. ¹ H NMR, ¹³ C NMR and NOESY spectral data of compound 1	S18
Table S2. ¹ H NMR, ¹³ C NMR and NOESY spectral data of compound 2	S19

General experimental procedures

Column chromatography (CC): Silica gel (200–300 mesh; Qingdao Marine Chemical Group, Co.); ODS (30-50 μ m; YMC CO. Ltd. Japan). Preparative HPLC: Waters 600E pump, Waters 2489 UV spectrophotometric detector at 220 nm, Waters Sunfire Prep ODS reversed phase column (10 μ m, 10×150 mm, flow rate: 2.0 mL/min); NMR spectra were recorded on Bruker AV-300 spectrometer, TMS as internal standard, δ in ppm, *J* in Hz; HR-ESI-MS were obtained on Waters LCT Premier XE time-of-flying mass spectrometer; CD spectrum were gotten on Biologic MOS-450 CD spectrometer.

All the chemicals and solvents used in the synthesis were obtained from commercial suppliers. (1*S*, 2*R*, 4*S*)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol (**3**) and (1*S*, 2*S*, 4*S*)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol (**4**)were obtained from Sigma Chemical (St. Louis, MO, USA). Solvents were dried without further purification except when otherwise noted. Reactions were monitored by TLC, which were visualized by UV inspection and stained with a 10% H_2SO_4 solution.

Fig. S2 IR spectra of 1

Fig. S4 ¹³C-NMR spectrum of 1

Monoisotopic Mass, Even Electron Ions 101 formula(e) evaluated with 7 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-100 H: 0-150 O: 0-40 Na: 0-1

TAW-76-5

100-

%-

TAW	20091221	7 169	(3.819)	Cm	(169:170-(149:164+176:189))	

137.1329		
	648.8280	
210.0776	335.0556 376.0842 609.301 649.8297 861.3429 935.4914	997.4685

935.491 800 900 1239.6815 1291.6116 1410.7961 1200 1300 1400 m/z 1055.4885 600 700 80 377.0874486.1 0 _ 200 300 500 400 1000 1100 -1.5 50.0 Minimum: 20.0 10.0 Maximum: PPM DBE Mass Calc. Mass mDa i-FIT Formula 305.1753 305.1729 305.1940 305.1600 305.1576 305.1905 305.1881 -0.3 2.1 -19.0 15.0 17.4 -15.5 -13.1 -1.0 6.9 -62.3 49.2 57.0 -50.8 -42.9 6.5 3.5 -1.5 2.5 -0.5 10.5 7.5 C18 C16 C13 C14 C12 C22 C20 305.1750 n/a n/a n/a n/a n/a n/a H25 H26 H30 H25 H26 H25 H26 04 04 07 07 0 0 Na Na Na Na

1: TOF MS ES+ 1.40e+003

Fig. S5 HR-EI-MS spectrum of 1

Fig. S6 HMBC spectrum of 1

Fig. S7. NOSEY spectrum of 1

S5

Fig. S8 Enlarged NOSEY of 1 (part 1)

Fig. S9 Enlarged NOSEY of 1 (part 2)

S7

Fig. S12 IR spectrum of 2

Fig. S14 ¹³C-NMR of 2

Monoisotopic 178 formula(Elements Use C: 0-100 F TAW-76-1 TAW_2009122	Mass, Even Electro e) evaluated with 7 r ed: 1: 0-150 O: 0-40 21_6 168 (3.774) Cm (*	on lons esults within 167:170-(149:	limits (all re: 162+180:192)	sults (up to 1	000) for each	mass)						1: T(DF MS ES+
100 137.133 	1 210.0763 335.054 	0 376.0825	457.0905 498 500	8.1201 609.3 600	648.8259 424 669.3403 +++ + + +	3 780.8965 780.8965 800	51.3358 91	9.5156 936.5043 1013. 1000	4162 116 	5,5039 1,, 1200	1318.6188 1318.6188 1300	1349,5649	2.760+003
Minimum: Maximum:		20.0	10.0	-1.5 50.0									
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula							
609.3424	609.3427 609.3275 609.3369 609.3580 609.3486 609.3521 609.3334	-0.3 14.9 5.5 -15.6 -6.2 -9.7 9.0	-0.5 24.5 9.0 -25.6 -10.2 -15.9 14.8	12.5 8.5 21.5 16.5 3.5 25.5 -0.5	6.6 7.5 7.8 9.4 10.5 12.2 13.8	C36 H49 C32 H49 C43 H45 C40 H49 C29 H53 C47 H45 C25 H53	08 011 03 05 013 016						

Fig. S15 HR-EI-MS spectrum of 2

Fig.16 NOSEY spectrum of 2.

Fig.17 Enlarged NOSEY spectrum of 2.

Fig.18 Enlarged NOSEY spectrum of 2.

Fig. S20 ¹H-NMR of 5

Fig. S 22 ¹H-NMR of 6

Fig. S23 Calculated ECDs of 1 and 2 using different basic sets

Fig. S24. The HOMO, LUMO, HOMO-1 and LUMO+1 orbitals of 1 generated by GaussView 5.0.8 program.

Synthesis of 5 and 6

A solution of (1S,2R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol (0.23 g, 1.5 mmol) and DBU (0.49 g, 3 mmol) in dried CH₂Cl₂ were stirred at 0 °C for 30 min before added to 4-methoxybenzoyl chloride (0.51 g, 3 mmol). The reaction mixture was then stirred at 0 °C for 1 h., acidified to pH 3-4 with 1 M HCl and extracted with CH₂Cl₂. The organic layer was washed with brine, dried over sodium sulfate, filtered and evaporated under reduced pressure. The crude product was purified by silica gel chromatography to

afford compound **5** as a white solid (0.33 g, 75.5%). The compound **6** (0.35 g, 80.1%) was synthetized with (1S,2S,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol (0.23 g, 1.5 mmol) through the same process as the compound 5

Compound 5: White grease; ¹H NMR (300 MHz, CDCl3): δ_H 8.00 (2H, d, J = 9.0 Hz, H-3', H-7'), 6.92 (2H, d, J = 9.0 Hz, H-4', H-6'), 5.09 (1H, br d, J = 9.2 Hz, H-2), 3.86 (3H, s, 5'-OCH3), 2.47 (1H, ddd, J = 14.1, 9.2 and 4.2 Hz, H-3β), 2.12 (1H, ddd, J = 12.8, 9.0, 4.2 Hz, H-6β), 1.78 (1H, ddt, J = 13.9, 9.0, 4.2 Hz, H-5β), 1.74 (1H, t, J = 4.2 Hz, H-4), 1.41 (1H, ddd, J = 12.8, 10.2, 4.2 Hz, H-6α), 1.30 (1H, ddd, J = 13.9, 10.2, 4.2 Hz, H-5α), 1.12 (1H, dd, J = 14.1, 4.2 Hz, H-3α), 0.96 (3H, s, H-10), 0.91 (3H, s, H-9), 0.90 (3H, s, H-8). Compound 6: White grease; ¹H NMR (300 MHz, CDCl3): δ_H 7.93 (2H, d, J = 8.4 Hz, H-3', H-7'), 6.88 (2H, d, J = 8.4 Hz, H-4', H-6'), 4.88 (1H, dd, J = 6.4 and 4.6 Hz, H-2), 3.84 (3H, s, 5'-OCH3), 1.91 (1H, dd, J=13.2, 4.2 Hz, H-3β), 1.89 (1H, dd, J=13.2, 4.6 Hz, H-3α), 1.80 (1H, dq, J = 12.9, 4.2 Hz, H-5β), 1.74 (1H, br t, J = 4.2 Hz, H-4), 1.60 (1H, td, J = 13.8, 4.2 Hz, H-6β), 1.32 (1H, ddd, J = 12.9, 9.2, 4.2 Hz, H-5α), 1.13 (1H, dd, J = 13.8, 9.2 Hz, H-6α), 1.11 (3H, s, H-10), 0.92 (3H, s, H-8), 0.88 (3H, s, H-9).

Cytotoxity Assay

The human cervical cancer HeLa cell line was purchased from American Type Culture Collection (#HB-8065, ATCC, Manassas, VA, USA). The cells were cultured in RPMI 1640 medium supplemented with 10 % FCS and 0.03 % L-glutamine (Gibco), and maintained at 37 °C with 5 % CO₂ in a humidified atmosphere.

HeLa cells were incubated in 96-well plates (NUNC, Roskilde, Denmark) at a seeding density of 1×10^5 cells per well. The cells were incubated with the test compounds of different concentrations. Four hours before the end of incubation, 20 µL 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, Sigma, St. Louis, MO, USA) solution (5.0 mg/L) was added to each well. The resulting crystals were dissolved in 100 µL DMSO. Absorbance was measured with a microplate reader (TECAN SPECTRA, Wetzlar, Germany). The cytotoxic effect was expressed as the relative percentage of cell growth inhibition as calculated below:

Cell growth inhibition (%) = $[A_{570} (\text{control}) - A_{570} (\text{compound})] / [A_{570} (\text{control}) - A_{570} (\text{blank})] \times 100$

Computational details

The conformational search were performed using the Spartan 08 program with the MMFF94 molecular mechanics force field. Then all of the possible conformers were optimized at B3LYP level of theory using 6-311++G (d, p) and B3LYP/TZVP basis sets. Frequency calculations based on previously optimized geometries were performed in order to ensure the minimum energy of the structure. Relative population of each conformer was valued on the basis of Boltzmann weighting factor at 298 K.

After that the ab initio GIAO (gauge including atomic orbital) NMR chemical shift values were calculated at the level of B3LYP/6-311++G(d, p) using the Gaussian 09 software package. The theoretical chemical shifts were obtained by the equation:

$$\delta_{isoX} = \sigma_{isoTMSX} - \sigma_{isoX} \tag{Eq.1}$$

where δ_{isoX} is the isotropic chemical shift, $\sigma_{isoTMSX}$ is the absolute shielding of the standard (in this case, TMS), σ is the absolute shielding of our compounds. The calculated average value for ¹³C isotropic magnetic shielding of TMS is 184.03 ppm and 31.97 ppm for ¹H.

Theoretical isotropic chemical shift depends on the Boltzmann distribution of each conformation:

$$\delta_{isoX}^{total} = \sum_{i=1}^{n} P_i \delta_{isoX_i}$$
(Eq.2)

Where δ_{isoXi} is the isotropic chemical shift of *i*th conformer, P_i is Boltzmann weighting factor of *i*th conformer, δ_{isoX}^{total} is the isotropic

chemical shift.

Then the theoretical chemical shifts are empirically scaled according to the following equation:

$$\delta_{scaled} = \frac{\delta_{calc} - intercept}{slope}$$
(Eq.3)

Where slope and intercept are obtained from a plot of the calculated data against the experimental data to be assigned; the purpose of this approach is to remove systematic errors in the shift calculation. The correlation coefficients were calculated between the scaled theoretical chemical shifts and experimental chemical shifts.

The geometries used for the ECD calculation are optimized by DFT calculations at the B3LYP/TZVP levels. The ECD were then simulated by the time-dependent density functional theory (TDDFT) method at the level of CAM-B3LYP/TZVP. ECD curves were generated by Specdis using half bandwidth of 0.2 eV. To generate the final spectrum of ECD, all the simulated spectra of the lowest energy conformations were averaged according to the Boltzmann distribution theory in which their Gibbs free energy (G) was adopted.

Table S1. ¹ H NMR,	¹³ C NMR and NOESY	spectral data of	compound 1 ((CDCl ₃) (¹ H: 300	MHz, ¹³ C: 75
MHz, δ : ppm, J: Hz)					

Position	Position $\delta(H) (J \text{ in } Hz)$		NOESY
1		49.1	
2	5.08 (1H, br d, <i>J</i> =9.6)	80.3	8,9
3α	1.12 (1H, dd, <i>J</i> =14.4, 4.2)	26.0	5α, 6α
3β	2.51 (1H, ddd, <i>J</i> =14.4, 9.6, 3.6)	30.9	9
4	1.74 (1H, t, <i>J</i> =4.2)	45.0	
5α	1.32 (1H, ddd, <i>J</i> =14.4, 9.6, 4.2)	20.1	3α
5β	1.80 (1H, ddt, J=14.4, 10.8, 4.2)	28.1	10
6α	1.40 (1H, ddd, <i>J</i> =12.6, 9.6, 4.2)	27.4	3α
6β	2.11 (1H, ddd, <i>J</i> =12.6, 10.8, 4.2)	27.4	8, 10
7		47.8	
8	0.91 (3H, br. s)	13.6	2, 6β, 9
9	0.92 (3H, br. s)	19.7	2, 3β, 8
10	0.97 (3H, br. s)	18.9	5β, 6β
1'		166.6	
2'		123.1	
3'	7.60 (1H, d, <i>J</i> =1.8)	111.7	4'-CH ₃ O
4'		146.2	
5'		149.8	
6'	6.96 (1H, d, <i>J</i> =8.4)	113.9	
7'	7.64 (1H, dd, <i>J</i> =8.4, 1.8)	123.9	
4'-CH ₃ O	3.95 (3H, br. s)	56.1	3'
5'-OH	6.02 (1H, br. s)		

Position	$\delta(\mathrm{H}) (J \mathrm{in} \mathrm{Hz})$	$\delta(C)$	NOESY
1		49.0	
2	4.89 (1H, dd, <i>J</i> =6.6, 4.2)	81.3	3α, 6α
3α	1.91 (1H, dd, <i>J</i> =13.2, 6.6)	28.0	2, 5α
3β	1.93 (1H, dt, <i>J</i> =13.2, 4.2)	38.9	9
4	1.76 (1H, br t, <i>J</i> =4.2)	45.1	
5α	1.27 (1H, ddd, <i>J</i> =14.4, 9.6, 4.2)	27.1	3α
5β	1.80 (1H, dq, <i>J</i> =14.4, 4.2)	27.1	10
6α	1.16 (1H, ddd, <i>J</i> =12.6, 9.6, 4.2)	22.7	2
6β	1.60 (1H, td, <i>J</i> =12.6, 4.2)	35.7	8, 10
7		47.0	
8	0.91 (3H, br s)	11.6	6β, 9
9	0.88 (3H, br s)	20.0	3β, 8, 3'
10	1.12 (3H, br s)	20.1	5β, 6β
1'		165.8	
2'		123.1	
3'	7.55 (1H, br s)	111.8	9, 4'-CH ₃ O
4'		146.2	
5'		149.8	
6'	6.93 (1H, d, <i>J</i> =8.4)	114.1	
7'	7.59 (1H, br d, <i>J</i> =8.4)	123.9	
4'-CH ₃ O	3.93 (3H, s)	56.0	3'
5'-OH	6.08 (1H, br s)		

19. Table S2. ¹H NMR, ¹³C NMR, and NOESY spectral data of compound **2** (CDCl₃) (¹H: 300 MHz, ¹³C: 75 MHz, δ : ppm, *J*: Hz)

Table S3. Relative free energies and populations of the conformations of 1 and 2.

Conf.	DFT/B3L	YP/TZVP	DFT/B3LYP/cc-pVDZ		
	ΔG ^a	P% ^b	ΔG^{a}	Р% ^ь	
1a	0	80	0	74.7	
1b	0.86	12.8	0.55	16.3	
1c	1.02	7.2	0.62	9.0	
2a	0	86.2	0	57.4	
2b	0.93	7	0.58	22.5	
2c	1.06	6.8	1.05	20.1	

^aThe unit for ΔG is kcal mol⁻¹.

 $^{\rm b}$ Populations based on ΔG values.