A high sensitive fluorescence turn-on probe for imaging Zn²⁺ in aqueous solution and living cells

Ting-Ting Zhang^a[†], Xin-Peng Chen^b[†], Jin-Ting Liu^{a,*}, Liang-Zhong Zhang^a, Jia-Ming Chu^a, Le Su^{b,*}, Bao-Xiang Zhao^{a,*}

 ^a Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
 ^b School of life, Shandong University, Jinan 250100, P.R. China

Fig. S1 UV-vis spectral changes of compound L (5×10^{-5} M) in the HEPES buffer solution (pH = 7.2, 50% CH₃CH₂OH, v/v) upon additions of various metal ions (25×10^{-5} M).

Fig. S2 UV-vis spectrum of **L** in HEPES buffer solution (20 mM HEPES, pH 7.2, EtOH : $H_2O = 1 : 1$) with different concentration

Fig. S3 Linear relation of the absorbance and L concentration at 355 nm. $R^2 = 0.999$

Fig. S4 The ratio of absorbance (354 nm/410 nm) of L (50 μ M) as a function of Zn²⁺ concentration. The inset shows the ratio of absorbance at 354 nm and 410 nm (A₃₅₄/A₄₁₀). R² = 0.960.

Fig. S5 Linear regression equation of L (10 μM) upon addition of Zn²⁺ (0.1–1.0 equiv.) in EtOH/HEPES (1:1, v/v, pH 7.2). R² = 0.995. $\sigma_{bi} = 4.67; m = 1.14 \times 10^8; LOD = 3\sigma_{bi}/m = 1.23 \times 10^{-7} M$

Fig. S6 Benesi–Hildebrand plot of L (10 μ M) in EtOH/HEPES (1:1, v/v, pH 7.2) buffered solution in the presence of Zn²⁺ (0.1–50 equiv.). R² = 0.999.

Fig. S7 Fluorescence emission spectra of L-Zn²⁺ (1.0×10^{-5} M) in the presence of Al³⁺, Cr³⁺, Fe³⁺, Co²⁺, Cu²⁺, Ni²⁺, Ba²⁺, Pb²⁺, Na⁺, Mg²⁺, K⁺ and Ca²⁺ (50×10^{-5} M) in the HEPES buffer solution (20 mM HEPES, pH = 7.2, EtOH : H₂O = 1 : 1). (Excitation wavelength: 410 nm).

Fig. S8 Fluorescence emission spectra of free probe L (10 μ M) in buffered EtOH/HEPES (20 mM, pH = 7.2, 1:1, v/v) upon addition of 5 equiv. of different zinc salts.

Fig. S9 Job's plot evaluated from the fluorescence spectra of L and Zn^{2+} at 410 nm in buffered EtOH/HEPES (1/1, v/v, pH 7.2) solution (the total concentration of L and Zn^{2+} is 1.0×10^{-5} M).

Fig. S10 Proposed complex structure of L with Zn²⁺.

Fig. S11 Fluorescence spectra of compound 6 (1.0×10^{-5} M) in the absence and presence of 5 equiv. of Zn²⁺ in the HEPES buffer solution (20 mM HEPES, pH = 7.2, EtOH : H₂O = 1 : 1). (Excitation wavelength: 410 nm).

Fig. S12 HRMS spectra of L-Zn²⁺ complex.

Fig. S13 Optimized structure of L-Zn²⁺ by DFT calculation.

Fig. S14 ¹H NMR spectra of L with 0, 5.0 equiv. Zn²⁺ in *d*-CH₃CN. (a) Free probe L.
(b) [Zn²⁺]/[L] equals 5 : 1.

Fig. S15 Reversibility of L-Zn²⁺ binding (Slit: 10 nm/5 nm).

7

Fig. S16 Effect of pH on the fluorescence intensity ($\lambda ex = 410 \text{ nm}$, $\lambda em = 472 \text{ nm}$) of L (10 μ M) in EtOH/HEPES (1/1, v/v, pH =7.2) buffered solution measured with and without Zn²⁺ (5 equiv.).

Fig.S17 Time course of the response of L (10 μ M) in the presence of Zn²⁺ (5 equiv.) in EtOH/HEPES (1/1, v/v, pH = 7.2) buffered solution. Excitation wavelength was 410 nm.

Fig. S18 SRB assay in HeLa cells with probe concentration of 5 μM at 6 h.

Fig. S19 ¹H NMR of 1-(3-hydroxynaphthalen-2-yl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)ethanone (L)

Fig. S20 ¹³C NMR of 1-(3-hydroxynaphthalen-2-yl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)ethanone (L)

Fig. S21 HRMS of 1-(3-hydroxynaphthalen-2-yl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)ethanone (L)