Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Supplementary Information

Synthesis of (-)-Epibatidine

Wen-Hua Chiou* and Yu-Min Chiang

wchiou@dragon.nchu.edu.tw

Department of Chemistry, National Chung Hsing University, Taichung 402 Taiwan, R.O.C.

Table of Contents

General methods and materials	2
Procedures to synthesize all compounds.	3
Crystal data and structure refinement for oxazolidinone 4a	18
Copies of ¹ H-NMR and ¹³ C-NMR spectra of all compounds	26

General Methods: TLC analyses were performed on 0.25 mm silica gel plates, and were visualized with UV light, iodine chamber, 10% sulfuric acid or 10% PMA solution. Melting points were measured by means of open capillaries. All NMR spectra, i.e., ¹H, ¹³C, DEPT, DQF-gCOSY, gHSQC, gHMBC, and NOE difference, were recorded on either 600 or 400 MHz NMR spectrometer, which provided all necessary data for the full assignment of each compound. HPLC analyses were carried out on a high-pressure mixing system with two pumps and a photodiodearray dectector. The mass analyzer used for the HRMS is double focusing magnetic sector. The specific rotation values were recorded on the wavelength of 589 nm.

Materials: Chemicals, reagents and solvents were purchased from commercial suppliers. The reagents were used as received. Dichloromethane, pyridine, triethylamine, acetonitrile, DMSO and methanol were dried and distilled over calcium hydride under argon before use. Ether was dried and distilled over sodium-benzophenone ketyl under argon before use. THF was dried and distilled over potassium metal under argon before use. Toluene and benzene were dried and distilled over sodium metal under argon or argon before use. The reaction flasks were dried in a 110 °C oven and allowed to cool to room temperature in a desiccator over calcium sulfate and assembled under argon atmosphere.

Separation of oxazolidinone diastereomers:

The racemic acid **3** (413 mg, 1.50 mmol, 1.0 eq.) was dissolved in one part of CH_2Cl_2 (~ 5 M). To the solution in an ice bath, was added $SOCl_2$ (3.0 eq.) followed by a drop of DMF under argon. Upon completion of addition, the ice bath was removed and the reaction mixture was allowed to be stirred at room temperature for 16 h. The reaction mixture was concentrated under reduced pressure to remove volatile substances, to yield a crude residue. The crude residue was diluted with one part of CH_2Cl_2 to give the crude acid chloride solution.

To a THF solution of (4*S*)-bezyl-2-oxazolidinone (319 mg, 1.80 mmol, 1.2 eq., ~ 0.3 M) at -50 °C under argon, BuLi (1.2 mL, 1.3 eq., 1.6 M in hexane) was slowly added by an additional funnel. The reaction mixture was allowed to be stirred at -50 °C for 1 h. The acid chloride solution was slowly cannulated to the oxazolidinone solution. The addition rate of the acid chloride solution was controlled so that the internal temperature was in the range between -40 to -50 °C. The resulting reaction mixture was allowed to be stirred at the temperature for 6 h. Upon completion of the reaction monitored by TLC analysis, chilled saturated NH₄Cl solution was added to quench the reaction, and the reaction mixture was concentrated under reduced pressure to remove excess organic solvent to yield a residue. The residue was partitioned with CH₂Cl₂ and water. The resulting aqueous layer was extracted with CH₂Cl₂ (X5). The combined organic layers were washed dried over anhydrous Na₂SO₄, and then concentrated to give crude product. Purification of the crude product by flash chromatography on silica gel, using EtOAc/n-Hex as the eluant afforded the titled product.

3-[(1R,2S,4S)-7-benzyloxycarbonyl-7-azabicyclo[2.2.1]heptane-2-carbonyl]-(4S)-benzyl-2-

oxazolidinone (4a): 290 mg, 0.667 mmol, 44%; white solid, mp 167-168 °C; R_f Cbz O = 0.37, EtOAc/n-Hex = 1/2; $[\alpha]_D^{25}$ +25.6 (*c*: 1.0, CHCl₃); ¹H-NMR (400 MHz, 25 °C, CDCl₃, δ): 1.47 (t, J = 7.2 Hz, 1H), 1.58-1.74 (m, 2H), 1.76-1.89 (m, 2H), 2.49 (ddd, J = 5.2, 5.2 and 10.4 Hz, 1H), 2.56-2.82 (m, 1H), 3.10-3.34 (m, 1H), 3.65 (dd, J = 5.2 and 8.4 Hz, 1H), 3.70 (brs, 0.5H), 3.97 (brs, 0.5H), 4.08-4.20 (m, 1H), 4.25 (brs, 0.5H), 4.38-4.45 (m, 2H), 4.63-4.68 (m, 0.5H), 4.94-5.15 (m, 2H), 7.06-7.40 (m, 10H); ¹³C-NMR (100 MHz, 25 °C, CDCl₃, δ): 28.9 (t), 29.6 (t), 31.8 (t), 37.6 (t), 47.7 (d), 55.4 (d), 56.3 (d), 60.2 (d), 66.2 (t), 66.8 (t), 127.2^{#1} (d), 127.9[#] (d),

¹ #: These methine peaks in two phenyl groups can not be quantified by either peak heights or integral values due to deformation and overlapping.

128.36[#] (d), 128.38[#] (d), 128.8[#] (d), 129.3[#] (d), 135.2 (s), 136.5 (s), 153.5 (s), 155.1 (s), 172.2 (s); EI-HRMS (m/z): $[M]^+$ calcd for $C_{25}H_{26}N_2O_5^+$, 434.1842; found, 434.1832 (Δ = 2.3 ppm).

3-[(1S,2R,4R)-7-benzyloxycarbonyl-7-azabicyclo[2.2.1]heptane-2-carbonyl]-(4S)-benzyl-2-

oxazolidinone (4b): 270 mg, 0.621 mmol, 41%; white solid, mp 110-111 °C; R_f Cbz = 0.29; EtOAc/n-Hex = 1/2; $[\alpha]_D^{25}$ +83.5 (*c*: 1.0, CHCl₃); ¹H-NMR (400 MHz, 25 °C, CDCl₃, δ): 1.43-1.50 (m, 1H), 1.57 (t, *J* = 9.6 Hz, 1H), 1.72 (t, *J* = 8.4 Hz, 1H), 1.81-1.94 (m, 2H), 2.50 (brs, 1.5H), 2.78 (brs, 0.5H), 3.08 (brs, 0.5H), 3.30 Bn^{× s} (brs, 0.5H), 3.58 (dd, *J* = 5.2, and 8.4 Hz, 1H), 4.18 (brs, 2H), 4.44(brs, 1H), 4.60 (brs, 2H), 4.84-5.24 (m, 2H), 7.00-7.60 (m, 10H); ¹³C-NMR (100 MHz, 25 °C, CDCl₃, δ): 28.7* (t), 29.5* (t), 31.8 (t), 37.5 (t), 47.5 (d), 55.3 (d), 56.1 (d), 60.1 (d), 66.3 (t), 66.8 (t), 127.1 (d), 127.8 (d, 2C), 128.3 (d, 2C), 128.8 (d, 3C), 129.4 (d, 2C), 135.3 (s), 136.5 (s), 153.5 (s), 154.9 (s), 172.2 (s); EI-HRMS (m/z): [M]⁺ calcd for C₂₅H₂₆N₂O₅⁺, 434.1842; found, 434.1834 (Δ = 1.8 ppm).

Hydrolysis of the oxazolidinone derivatives:

To a THF solution (2.5 mL) of oxazolidinone 4 (0.44 mmol, 1.0 eq.) in an ice bath, LiOH•H₂O (29.6 mg, 0.70 mmol, 1.6 eq.) was added followed by H_2O_2 (35%, 180 µL, 2 mmol, 4 eq.). The reaction mixture was allowed to be stirred at room temperature for 2 h. Upon completion of the reaction monitored by TLC analysis, a Na₂SO₃ solution (0.2 g dissolved in 1.5 mL) was added to quench the reaction, and the reaction mixture was concentrated under reduced pressure to remove excess organic solvent. H_2O (2 mL) was added to the aqueous solution. The resulting aqueous solution was washed with CH_2Cl_2 (2 mL X5), and covered with EtOAc (10 mL). The bilayer solution was acidified with a HCl solution (3 N) until pH was around 2. White precipitate was observed during acidification. After separation of the organic layer, the resulting aqueous layer was extracted with EtOAc (10 mL X 5). The combined organic layers were washed with brine (10 mL), and dried over anhydrous Na₂SO₄, and then concentrated to give the crude acid. Purification of the crude acid product by flash chromatography on silica gel, using EtOAc/n-Hex/AcOH as the eluant, gave the titled product as a colorless oil.

HPLC condition: CHIRACEL OD-H, 4.6 mm X 250 mm, 5 μ m; Mobile phase A: 0.5% TFA in an IPA/*n*-Hex solution (v/v = 1/10); Mobile phase B: 0.5% TFA in pure *n*-Hex; isocratic, 50% A :50% B; flow rate 1.0 mL per min; detection UV 215 nm, t_R : 18.4 min for (+)-3, 26.3 min for (–)-3.

	Retention Time	Area	% Area	Height
1	18.426	18454909	49.31	432817
2	26.317	18972776	50.69	313734

(-)-(1*R*,2*S*,4*S*)-7-benzyloxycarbonyl-7-azabicyclo[2.2.1]heptane-2-carboxylic acid (-)-3: 98%; colorless oil, $R_f = 0.24$; EtOAc/n-Hex = 1/4; $[\alpha]_D^{25}$ -8.6 (*c*: 1.0, CHCl₃); t_R : 26.5 min for (-)-3.

(+)-(1*S*,2*R*,4*R*)-7-benzyloxycarbonyl-7-azabicyclo[2.2.1]heptane-2-carboxylic acid (+)-3: 93%; colorless oil, $R_f = 0.24$; EtOAc/n-Hex = 1/4; $[\alpha]_D^{25}$ +8.8 (*c*: 1.0, CHCl₃); t_R : 18.4 min for (+)-3.

(-)-(1*R*,2*S*,4*S*)-7-benzyloxycarbonyl-7-azabicyclo[2.2.1]heptane-2-methanol

(5): To a solution of the acid 3 (9.16 g, 33.3 mmol, 1.0 eq.) in THF (80 mL) in an ice bath, was slowly added BH₃•SMe₂ solution (2 M, in THF, 35 mL, 69.9 mmol,

2.1 eq.). The reaction mixture was allowed to be stirred at room temperature for 5 h. Upon completion of the reaction monitored by TLC analysis, chilled water (48 mL) was added to quench the reaction, and the reaction mixture was concentrated under reduced pressure to remove excess organic solvent. The aqueous solution was partitioned with EtOAc (40 mL) and water (80 mL). The resulting aqueous layer was extracted with EtOAc (20 mL X5). The combined organic layers were washed with saturated NaHCO₃ (15 mL), brine (30 mL), and dried over anhydrous Na₂SO₄. After removal of the solid dehydrating agent, the organic layer was concentrated under reduced pressure to give a crude product. Purification of the crude product by flash chromatography on silica gel, using EtOAc/n-Hex as the eluant, gave the titled product as a colorless oil (8.35 g, 32.0 mmol, 96%): $R_f = 0.36$, EtOAc/n-Hex = 4/1; $[\alpha]_{D}^{24}$ –19.4 (c: 1.0, CHCl₃); ¹H-NMR (400 MHz, 25 °C, CDCl₃, δ): 1.14-1.22 (m, 1H, H-3 exo), 1.30-1.42 (m, 2H, H-5 and H-6), 1.45 (dd, J = 8.4 and 12.4 Hz, 1H, H-3 endo), 1.70 (br, 2H, H-5 and H-6), 1.84-1.91 (m, 1H, H-2), 3.19-3.29 (m, 2H, CH₂OH), 3.80-4.10 (br, 1H, CH₂OH), 4.24 (brs, 2H, H-1 and H-4), 5.04 (brs, 2H, -OCH₂Ph), 7.21-7.28 (m, 1H, H-4' in Ph), 7.27-7.31 (m, 4H, H-2' and H-3' in Ph); ¹³C-NMR (100 MHz, 25 °C, CDCl₃, δ): 28.7 (t, 2C, C-5 and C-6), 32.9 (t, C-3), 45.1 (d, C-2), 55.4 (d, C-4), 57.1 (d, C-1), 64.1 (t, CH₂OH), 66.2 (t, OCH₂Ph), 127.2 (d, C-2 in Ph), 127.4 (d, C-4 in Ph), 127.9 (d, C-3 in Ph), 136.2 (s, C-1 in Ph), 155.2 (s, N-CO-O). EI-HRMS (m/z): [M]⁺ calcd for C₁₅H₁₉NO₃⁺, 261.1365; found, 261.1368 ($\Delta = 1.1$ ppm).

HPLC condition: Chiralcel OD-H, 250 mm X 4.6 mm, 5 μ m; Mobile phase A: IPA : n-Hex = 1 : 15 (v/v); Mobile phase B: pure n-Hex; isocratic, 50% A : 50% B; flow rate 1.0 mL per min; detection UV 215 nm, t_R : 25.9 min for (+)-5, 28.5 min for (-)-5.

	Retention Time	Area	% Area	Height
1	25.932	9340012	49.52	196658
2	28.545	9521818	50.48	189645

(+)-(1*R*,2*S*,4*S*)-7-benzyloxycarbonyl-7-azabicyclo[2.2.1]heptane-2-carbaldehyde

(6): To a solution of alcohol 5 (5.52 g, 21.1 mmol, 1.0 eq.) in CH_2Cl_2 (150 mL) in an ice bath, was slowly added Dess-Martin periodinane reagent (10.75 g, 25.34

Cbz N 1R 4S CHO

mmol, 1.2 eq.) in ~3 g portions. The reaction mixture was allowed to be stirred at room temperature for 3 h. Upon completion of the reaction monitored by TLC analysis, chilled saturated NaHCO₃ (245 mL) was added, followed by filtration with a celite pad to yield a fitrate. After separation of the organic layer, the resulting aqueous layer was extracted with CH₂Cl₂ (50 mL X5). The combined organic layers were dried over anhydrous Na₂SO₄. After removal of the solid dehydrating agent, the organic layers was concentrated under reduced pressure to give a crude product. Purification of the crude product by flash chromatography on silica gel, using EtOAc/n-Hex as the eluant, gave the titled product as a colorless oil (5.10 g, 19.7 mmol, 93%): R_f = 0.28, EtOAc/n-Hex = 1/2; $[\alpha]_D^{23}$ +11.5 (*c*: 1.0, CHCl₃); ¹H-NMR (400 MHz, 25 °C, CDCl₃, δ): 1.34-1.50 (m, 3H, H-3, H-5 and H-6), 1.64-1.82 (m, 2H, H-5 and H-6), 2.08-2.16 (m, 1H, H-3), 2.44 (dd, *J* = 4.4 and 7.6 Hz, 1H, H-2), 4.30 (brs, 1H, H-4), 4.52 (brs, 1H, H-1), 4.92-5.05 (m, 2H, -OCH₂Ph), 7.20-7.29 (m, 5H, -Ph), 9.50 (s, 1H, -CHO); ¹³C-NMR (100 MHz, 25 °C, CDCl₃, δ): 28.9 (t, 2C, C-5 and C-6), 29.8 (t, C-3), 54.5 (d, C-2), 55.8 (d, C-4), 55.6 (d, C-1), 66.5 (t, OCH₂Ph), 127.5 (d, C-2 in Ph), 127.6 (d, C-4 in Ph), 128.0 (d, C-3 in Ph), 136.0 (s, C-1 in Ph), 154.7 (s, N-CO-O), 200.3 (d, CHO); EI-HRMS (m/z): [M]⁺ calcd for C₁₅H₁₇NO₃⁺, 259.1208; found, 259.1201 (Δ = 2.7 ppm).

2-[(1R,2S,4S)-7-benzyloxycarbonyl-7-azabicyclo[2.2.1]heptan-2-yl]-

methoxyethene (7): To a solution of methoxymethyltriphenylphosphonium chloride (Ph₃PCH₂OCH₃•Cl, 4.49 g, 13.1 mmol, 2.0 eq.) in THF (60 mL) at -50

°C, was slowly added NaHMDS solution (2.0 M in THF, 6.5 mL, 13.1 mmol, 2.0 eq.). After stirred at -50 °C for 30 min, the yellow solution became an orange solution. To the ylide solution at -50 °C, was slowly added an aldehyde 6 (1.700 g, 6.556 mmol, 1.0 eq.) solution in THF (20 mL). The reaction mixture was allowed to be stirred at room temperature for 4 h. Upon completion of the reaction monitored by TLC analysis, the solution was concentrated under reduced pressure to a crude reside. The crude residue was partitioned with ether (75 mL) and water (75 mL). After separation of the organic layer, the resulting aqueous layer was extracted with ether (20 mL X5). The combined organic layers were dried over anhydrous Na₂SO₄, and then concentrated under reduced pressure to give a crude product. Purification of the crude product by flash chromatography on silica gel, using EtOAc/n-Hex as the eluant, gave the titled product as a colorless oil (1.658 g, 5.769 mmol, 88%): $R_f = 0.59$, EtOAc/n-Hex = 1/2; ¹H-NMR (400 MHz, 25 °C, CDCl₃, δ): 1.28-1.50 (m, 3H), 1.62-1.78 (m, 3H), 2.17-2.23 (m, 0.6H), 2.70-2.76 (m, 0.4H), 3.35 (brs, 1.8H), 3.50 (s, 1.2H), 4.01 (d, J = 16 Hz, 1H), 4.18-4.34 (m, 1.5H), 4.59 (t, J = 9.6 Hz, 0.5H), 5.02-5.14 (m, 2H), 5.70 (d, J = 6.0 Hz, 0.4H), 6.27 (d, J = 12.8 Hz, 0.6H), 7.20-7.44 (m, 5H); ¹³C-NMR (100 MHz, 25 °C, CDCl₃, δ): 28.7 (t, 4C), 37.8 (t), 40.0 (t), 41.9 (d, 2C), 55.2 (g), 55.7 (d), 55.8 (d), 59.1 (g), 61.5 (d), 62.0 (d), 66.17 (t), 66.21 (t), 106.6 (d), 110.7 (d), 127.44 (d, 2C), 127.46 (d, 2C), 127.51 (d), 127.56 (d), 128.04 (d, 2C), 128.09 (d, 2C), 136.6 (s, 2C), 144.7 (d), 146.2 (d), 155.2 (s, 2C); EI-HRMS (m/z): [M]⁺ calcd for C₁₇H₂₁NO₃⁺, 287.1521; found, 287.1511 ($\Delta = 3.5$ ppm).

(-)-(1R,2S,4S)-7-benzyloxycarbonyl-7-azabicyclo[2.2.1]heptan-2-

ylacetaldehyde (8): To a solution of enol ether **7** (4.61 g, 16.0 mmol, 1.0 eq.) in THF (70 mL) in an ice bath, was slowly added HCl solution (1 M in THF, 16 mL).

The reaction mixture was allowed to be stirred at room temperature for 2 h. Upon completion of the reaction monitored by TLC analysis, the reaction mixture was concentrated under reduced pressure to afford a residue. The crude residue was partitioned with EtOAc (40 mL) and water (40 mL). After separation of the organic layer, the resulting aqueous layer was extracted with EtOAc (15 mL X5). The combined organic layers were washed with saturated NaHCO₃ (55 mL), brine (15 mL), and dried over

anhydrous Na₂SO₄. After removal of the solid dehydrating agent, the organic layer was concentrated under reduced pressure to give a crude product. Purification of the crude product by flash chromatography on silica gel, using EtOAc/n-Hex as the eluant, gave the titled product as a colorless oil (4.02 g, 14.7 mmol, 92%): colorless oil, $R_f = 0.33$; EtOAc/n-Hex = 1/2; $[\alpha]_D^{25} - 1.8$ (*c*: 1.0, CHCl₃); ¹H-NMR (400 MHz, 25 °C, CDCl₃, δ): 1.16-1.23 (m, 1H, H-3), 1.30 (t, J = 8.8 Hz, 1H, H-5), 1.40 (t, J = 8.8 Hz, 1H, H-6), 1.55-1.75 (m, 3H, H-3, H-5 and H-6), 2.04-2.11 (m, 1H, H-2), 2.19-2.26 (m, 1H, -CH₂CHO), 2.45 (br, 1H, -CH₂CHO), 3.94 (brs, 1H, H-1), 4.21 (brs, 1H, H-4), 4.99 (d, J = 12.4 Hz, 1H, -OCH₂Ph), 5.03 (d, J = 12.4 Hz, 1H, -OCH₂Ph), 7.18-7.24 (m, 1H, H-4 in Ph), 7.23-7.28 (m, 4H, H-2' and H-3' in Ph), 9.56 (s, 1H, -CHO); ¹³C-NMR (100 MHz, 25 °C, CDCl₃, δ): 28.6 (t, C-5), 28.7 (t, C-6), 36.4 (d, C-2), 37.2 (t, C-3), 49.4 (t, -CH₂CHO), 55.8 (d, C-4), 59.8 (d, C-1), 66.3 (t, OCH₂Ph), 127.5 (d, C-2 in Ph), 127.6 (d, C-4 in Ph), 128.1 (d, C-3 in Ph), 136.3 (s, C-1 in Ph), 155.2 (s, N-CO-O), 201.0 (d, -CH₂CHO); EI-HRMS (m/z): [M]⁺ calcd for C₁₆H₁₉NO₃⁺, 273.1365; found, 273.1361 ($\Delta = 1.5$ ppm).

(-)-(1*R*,2*S*,4*S*)-7-benzyloxycarbonyl-7-azabicyclo[2.2.1]heptan-2-ylacetic

acid (9): To a solution of aldehyde 8 (171 mg, 0.626 mmol, 1.0 eq.) in acetone (1.3 mL) in an ice bath, was slowly added Jones' reagent (1.34 M, 600 μ L, 0.8

mmol, 1.3 eq.). The reaction mixture was allowed to be stirred at the ice bath for 1 h. Upon completion of the reaction monitored by TLC analysis, IPA (1 mL) was added to quench the reaction, followed by addition of brine (2.0 mL) and CH₂Cl₂ (4 mL). The resulting aqueous solution was extracted with CH₂Cl₂ (2 mL X4). The combined organic layers were dried over anhydrous Na₂SO₄. After removal of the solid dehydrating agent, the organic layer was concentrated under reduced pressure to give a crude product. Purification of the crude product by flash chromatography on silica gel, using EtOAc/n-Hex/AcOH as the eluant, gave the titled product as a colorless oil (172 mg, 0.594 mmol, 95%): R_f = 0.23; EtOAc/n-Hex = 1/1; [α]_D²⁶ –5.9 (*c*: 1.0, CHCl₃); ¹H-NMR (400 MHz, 25 °C, CDCl₃, δ): 1.32-1.42 (m, 2H, H-3 and H-5), 1.46 (t, *J* = 8.8 Hz, 1H, H-6), 1.62-1.82 (m, 3H, H-3, H-5 and H-6), 2.04-2.11 (m, 1H, H-2), 2.09-2.24 (m, 1H, -CH₂COOH), 2.40 (br, 1H, -CH₂COOH), 4.12 (brs, 1H, H-1), 4.30 (brs, 1H, H-4), 5.09 (s, 2H, -OCH₂Ph), 7.24-7.35 (m, 5H in Ph), 8.60 (brs, 1H, -CODH); ¹³C-NMR (100 MHz, 25 °C, CDCl₃, δ): 28.8 (t, 2C, C-5 and C-6), 37.1 (t, C-3), 38.9 (d, C-2), 39.4 (t, -CH₂COOH), 56.1 (d, C-4), 60.0 (d, C-1), 66.8 (t, OCH₂Ph), 127.7 (d, C-2 in Ph), 127.8 (d, C-4 in Ph), 128.3 (d, C-3 in Ph), 136.4 (s,

C-1 in Ph), 155.6 (s, N-<u>C</u>O-O), 177.3 (s, -CH₂<u>C</u>OOH); EI-HRMS (m/z): $[M]^+$ calcd for C₁₆H₁₉NO₄⁺, 289.1314; found, 289.1305 ($\Delta = 3.1$ ppm).

HPLC condition: Chiralcel OD-H, 250 mm X 4.6 mm, 5 μ m; Mobile phase A: 0.5% TFA in an IPA/n-Hex solution (v/v = 1/10); Mobile phase B: 0.5% TFA in pure n-Hex; isocratic, 70% A : 30% B; flow rate 1.0 mL per min; detection UV 215 nm, $t_{\rm R}$: 12.4 min for (+)-9, 14.6 min for (–)-9.

Ethyl 4-[(1'R,2'S,4'S)-7-benzyloxycarbonyl-7-azabicyclo[2.2.1]heptan-2-yl]- Cbz N Cbz N COOEt 5-oxo-pentanoate(10): To a solution of aldehyde 9 (3.00 g, 11.0 mmol, 1.0 M

diethyltrimethylsilylamine (TMSNEt₂, 2.1 mL, 11.0 mmol, 1.0 eq.) and ethyl acrylate (1.8 mL, 16.5 mmol, 1.5 eq.). The reaction mixture was allowed to be refluxed for 13 h. Upon completion of the reaction monitored by TLC analysis, the reaction mixture was concentrated under reduced pressure to yield a residue. Purification of the crude residue product by flash chromatography on silica gel, using EtOAc/n-Hex as the eluant, gave the titled product glutarate semialdehyde **10** as a colorless oil (3.32 g,

8.89 mmol, 81%): $R_f = 0.23$; EtOAc/n-Hex = 1/3; ¹H-NMR (400 MHz, 25 °C, CDCl₃, δ):1.13 (t, J = 7.2 Hz, 3H), 1.26-1.42 (m, 2.5H),1.42-1.57 (m,1.5H), 1.58-1.76 (m, 3H), 1.78-1.90 (m, 2H), 2.00-2.24 (m, 3H), 4.00 (dd, J = 7.2, 14.4 Hz, 2H), 4.03-4.10 (m, 0.5H), 4.21 (br, 1.5H), 4.94-5.04 (m, 2H), 7.17-7.20 (m, 1H), 7.21-7.27 (m, 4H), 9.44 (s, 0.5H), 9.54 (brs, 0.5H); ¹³C-NMR (100 MHz, 25 °C, CDCl₃, δ): 13.8 (q, 2C), 21.4 (t), 22.2 (t), 28.6-29.3 (t, 4C), 30.9 (t), 31.0 (t), 34.9 (t, 2C), 42.8 (d, 2C), 54.4 (d), 54.8 (d), 55.7 (d), 56.0 (d), 57.7 (d), 58.1 (d), 60.11 (t), 60.14 (t), 66.36 (t), 60.39 (t), 127.52 (d, 2C), 127.55 (d, 2C), 127.65 (d), 127.66 (d), 128.09 (d, 2C), 128.11 (d, 2C), 136.27 (s), 136.28 (s), 150 (s, 2C), 172.26 (s), 172.31 (s), 203.0 (d), 203.4 (d); ESI-HRMS (m/z): [M+H]⁺ calcd for [C₂₁H₂₇NO₅•H]⁺, 374.1967; found, 374.1969 ($\Delta = 0.5$ ppm).

(-)-5-[(1'R,2'S,4'S)-7-benzyloxycarbonyl-7-azabicyclo[2.2.1]heptan-2-yl]-

3,4-dihydropyrid-2-one (11): To a solution of glutarate semialdehyde **10** (350 mg, 0.937 mmol, 1.0 eq.) in benzene (1.0 mL) in an ice bath, was slowly added

ammonium acetate (87 mg, 1.13 mmol, 1.2 eq.) and acetic acid (80 µL, 1.40 mmol, 1.5 eq). The reaction mixture was allowed to be refluxed for 2.5 h. Upon completion of the reaction monitored by TLC analysis, a NaHCO₃ solution (5%, 4 mL) was added to quench the reaction at the ice bath, followed by addition of brine (5 mL) and ether (5 mL). The resulting aqueous solution was extracted with ether (3 mL X5). The combined organic layers were washed with brine (5 mL), dried over anhydrous Na₂SO₄, and then concentrated under reduced pressure to give a crude product. Purification of the crude product by flash chromatography on silica gel, using MeOH/CH₂Cl₂ as the eluant, gave the titled product as a white solid (287 mg, 0.879 mmol, 93%): mp 127-128 °C, $R_f = 0.33$; MeOH/CH₂Cl₂ = 1/10; [α]_D²⁵ –1.3° (c: 1.0, CHCl₃); ¹H-NMR (400 MHz, 25 °C, CDCl₃, δ): 1.36-1.46 (m, 2H, H-5 and H-6), 1.58-1.66 (m, 2H, H-3), 1.72 (brs, 2H, H-5 and H-6), 2.18 (brs, 2H, H-4 in pyridone), 2.27 (t, J = 6.8Hz, 1H, H-2), 2.28-2.38 (m, 2H, H-3 in pyridone), 4.04-4.20 (m, 1H, H-1), 4.32 (brs, 1H, H-4), 4.98-5.08 (m, 2H, -OCH₂Ph), 5.78 (brs, 1H, H-6 in pyridone), 7.22-7.34 (m, 5H, -Ph), 7.93 (s, 1H,-NH); ¹³C-NMR (100 MHz, 25 °C, CDCl₃, δ): 22.5 (t, C-4 in pyridone), 28.9 (t, 2C, C-5 and C-6), 30.1 (t, C-3 in pyridone), 35.9 (t, C-3), 46.2 (d, C-2), 55.6 (d, C-4), 59.5 (d, C-1), 66.5 (t, OCH₂Ph), 119.4 (d, C-6 in pyridone), 119.7 (s, C-5 in pyridone), 127.8 (d, C-2 in Ph), 127.9 (d, C-4 in Ph), 128.3 (d, C-3 in Ph), 136.5 (s, C-1 in Ph), 154.6 (s, N-CO-O), 171.1 (s, C-2 in pyridone); EI-HRMS (m/z): [M]⁺ calcd for $C_{19}H_{22}N_2O_3^+$, 326.1630; found, 326.1631 ($\Delta = 0.3$ ppm).

HPLC condition: Chiralcel OD-H, 250 mm X 4.6 mm, 5 μ m; Mobile phase A: IPA : n-Hex = 1 : 4 (v/v); Mobile phase B: pure n-Hex; isocratic, 70% A : 30% B; flow rate 1.0 mL per min; detection UV 258 nm, t_R : 23.5 min for (+)-11, 27.4 min for (-)-11.

(+)-5-[(1'*R*,2'*S*,4'*S*)-7-benzyloxycarbonyl-7-azabicyclo[2.2.1]heptan-2-yl]-2pyridine (12): To a solution of dihydropyridone 11 (245 mg, 0.751 mmol, 1.0 eq.) in benzene (3.7 mL), was added MnO₂ (65 mg, 0.75 mmol, 1.0 eq.). The reaction mixture was allowed to be refluxed for 13 h. Additional MnO₂ was added in 65 mg portions every hour until total amount reachs to 9.0 equivalent. Upon completion of the reaction monitored by TLC analysis, the reaction mixture was filtered with a celite pad to yield a fitrate. The filtrate was concentrated under reduced pressure to give a crude residue. Purification of the crude product by flash chromatography on silica gel, using MeOH/CH₂Cl₂ as the eluant to give the titled product as a yellow solid (220 mg, 0.678 mmol, 90%): mp 78-80 °C, $R_f = 0.24$; MeOH/CH₂Cl₂ = 1/10; $[\alpha]_D^{23} + 21.9$ (*c*: 1.0, CHCl₃); ¹H-NMR (400 MHz, 25 °C, CDCl₃, δ): 1.40-1.56 (m, 2H, H-5 and H-6), 1.66-1.80 (m, 3H, H-3,

H-5 and H-6), 1.88 (dd, J = 9.2 and 12.0 Hz, 1H, H-3 endo), 2.61 (dd, J = 4.4 and 8.0 Hz, 1H, H-2), 4.14 (brs, 1H, H-1), 4.39 (brs, 1H, H-4), 5.06 (s, 2H, -OC<u>H</u>₂Ph), 6.46 (d, J = 9.2 Hz, 1H, H-3 in pyridone), 7.18 (s, 1H, H-6 in pyridone), 7.29 (brs, 5H -Ph), 7.40 (d, J = 9.2 Hz, 1H, H-4 in pyridone), 13.3 (s, 1H, NH); ¹³C-NMR (100 MHz, 25 °C, CDCl₃, δ): 28.8 (t, C-5), 30.8 (t, C-6), 39.3 (t, C-3), 44.4 (d, C-2), 56.0 (d, C-4), 62.0 (d, C-1), 66.8 (t, OCH₂Ph), 120.1 (d, C-3 in pyridone), 124.0 (s, C-5 in pyridone), 127.8 (d, C-2 in Ph), 127.9 (d, C-4 in Ph), 128.4 (d, C-3 in Ph), 131.5 (d, C-6 in pyridone), 136.4 (s, C-1 in Ph), 141.7 (d, C-4 in pyridone), 155.3 (s, N-CO-O), 164.6 (s, C-2 in pyridone); EI-HRMS (m/z): [M]⁺ calcd for C₁₉H₂₀N₂O₃⁺, 324.1474; found, 324.1480 (Δ = 1.9 ppm).

HPLC condition: Chiralcel OD-H, 250 mm X 4.6 mm, 5 μ m; Mobile phase A: IPA : n-Hex = 1 : 4 (v/v); Mobile phase B: pure n-Hex; isocratic, 80% A : 20% B; flow rate 1.0 mL per min; detection UV 310 nm, $t_{\rm R}$: 21.7 min for (–)-12, 29.7 min for (+)-12.

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.00 38.00 40.00 42.00 44.00 Minutes

	Retention Time	Area	% Area	Height
1	21.675	5894555	51.26	71377
2	29.742	5603737	48.74	47797

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.00 38.00 40.00 42.00 44.00 Minutes

	Retention Time	Area	% Area	Height
1	22.301	123305	1.48	1727
2	29.522	8210735	98.52	66521

5-[(1'*R*,2'*S*,4'*S*)-7-formyl-7-azabicyclo[2.2.1]heptan-2-yl]-2-chloropyridine

(13): To a mixture of pyridone 12 (190 mg, 0.586 mmol, 1.0 eq.) and DMF (300 μ L, 3.87 mmol, 6.6 eq.) in an ice bath, was slowly added POCl₃ (300 μ L,

3.22 mmol, 5.5 eq.). The reaction mixture was allowed to be stirred at 80 °C for 8.5 h. Upon completion of the reaction monitored by TLC analysis, chilled CH₂Cl₂ (1 mL) was added. The reaction mixture was transferred to a chilled biphasic solution of NaOH (1 N, 5 mL) and CH₂Cl₂ (5 mL). The pH value was controlled in the range of 9~10. The aqueous solution was extracted with CH₂Cl₂ (4 mL X5). The combined organic layers were dried over anhydrous Na₂SO₄ and then concentrated under reduced pressure to give a crude product. Purification of the crude product by flash chromatography on silica gel, using MeOH/CH₂Cl₂/Et₃N as the eluant to give the titled product as a yellow oil (101 mg, 0.427 mmol, 73%): $R_f = 0.43$; MeOH/CH₂Cl₂ = 1/20; ¹H-NMR (400 MHz, 25 °C, CDCl₃, δ): ² 1.55-1.90 (m, 10H), 2.06 (dd, J = 8.8 and 12.4 Hz, 1H), 2.15 (dd, J = 9.2 and 12.4 Hz, 1H), 2.99 (t, J = 4.0 Hz, 1H), 3.01 (t, J) = 4.0 Hz, 1H), 3.89 (d, J = 4.0 Hz, 1H), 4.27 (t, J = 4.4 Hz, 1H), 4.61 (d, J = 4.4 Hz, 1H), 4.78 (t, J = 4.8 Hz, 1H), 7.20 (d, J = 8.4 Hz, 1H), 7.23 (d, J = 8.4 Hz, 1H), 7.43 (dd, J = 2.4 and 8.8 Hz, 1H), 7.53 (dd, J = 2.4 Hz, 1H), = 2.8 and 8.8 Hz, 1H), 7.99 (s, 1H), 8.16 (d, J = 2.0 Hz, 1H), 8.17 (s, 1H), 8.19 (d, J = 2.0 Hz, 1H); ¹³C-NMR (100 MHz, 25 °C, CDCl₃, δ): 28.2 (t), 29.1 (t), 29.8 (t), 30.7 (t), 38.7 (t), 41.2 (t), 44.1 (d), 44.8 (d), 51.6 (d), 55.3 (d), 56.6 (d), 61.8 (d), 124.2 (d), 124.4 (d), 136.4 (d), 136.8 (d), 138.5 (s), 139.0 (s), 148.4 (d), 148.7 (d), 149.4 (s), 149.8 (s), 157.2 (d), 157.6 (d). EI-HRMS (m/z): [M]⁺ calcd for C₁₂H₁₃ClN₂O⁺, 236.0716; found, 236.0712 ($\Delta = 1.7$ ppm).

(-)-5-[(1'R,2'S,4'S)-7-azabicyclo[2.2.1]heptan-2-yl]-2-chloropyridine

(epibatidine, 1): To a solution of formamide 13 (107 mg, 0.452 mmol, 1.0 eq.) in MeOH (0.4 mL) in an ice bath, was slowly added HCl in methanol solution (5%,

0.6 mL). The reaction mixture was allowed to be stirred at at 60 °C for 2 h. Upon completion of the reaction monitored by TLC analysis, chilled CH_2Cl_2 (1 mL) was added. The reaction mixture was transferred to a chilled biphasic solution of K_2CO_3 (10%, 8 mL) and CH_2Cl_2 (5 mL). The pH value was controlled in the range of 9~10. The aqueous solution was extracted with CH_2Cl_2 (3 mL X5). The combined organic layers were dried over anhydrous Na_2SO_4 and then concentrated under reduced pressure to give a crude product. Purification of the crude product by flash chromatography on silica gel,

² The product appears as an equal mount of E/Z mixture.

using MeOH/CH₂Cl₂/NEt₃ as the eluant to give the titled product as a yellow oil (87 mg, 0.417 mmol, 92%): $R_f = 0.15$; MeOH/CH₂Cl₂/NEt₃ = 1/20/0.2; [α]_D²⁵ –6.8 (*c*: 1.0, CHCl₃), [lit.³ [α]_D²⁵ –6.5 (*c*: 1.0, CHCl₃)]; ¹H-NMR (400 MHz, 25 °C, CDCl₃, δ): 1.42-1.55 (m, 5H, H-3, H-5 X2 and H-6 X2), 1.69 (s, 1H, N<u>H</u>), 1.83 (dd, *J* = 8.8 and 12.0 Hz, 1H, H-3 endo), 2.69 (dd, *J* = 4.4 and 8.8 Hz, 1H, H-2), 3.48 (brs, 1H, H-1), 3.72 (t, *J* = 4.0 Hz, 1H, H-4), 7.15 (d, *J* = 8.4 Hz, 1H, H-3 in pyridine), 7.70 (dd, *J* = 2.4 and 8.0 Hz, 1H, H-4 in pyridine), 8.20 (d, *J* = 2.4 Hz, 1H, H-6 in pyridine); ¹³C-NMR (100 MHz, 25 °C, CDCl₃, δ): 30.0 (t, C-5), 31.2 (t, C-6), 40.2 (t, C-3), 44.3 (d, C-2), 56.0 (d, C-4), 62.6 (d, C-1), 123.7 (d, C-3 in pyridine), 137.6 (d, C-4 in pyridine), 141.0 (s, C-5 in pyridine), 148.6 (d, C-6 in pyridine), 148.7 (s, C-2 in pyridine). EI-HRMS (m/z): [M]⁺ calcd for C₁₁H₁₃ClN₂⁺, 208.0767; found, 208.0763 (Δ = 1.9 ppm).

HPLC condition: Chiralcel OD-H, 250 mm X 4.6 mm, 5 μ m; Mobile phase A: 0.1% Et₂NH in an IPA/n-Hex solution (v/v = 1/15); Mobile phase B: pure n-Hex; isocratic, 50% A : 50% B; flow rate 1.0 mL per min; detection UV 274 nm, t_R : 18.5 min for (–)-1, 21.6 min for (+)-1.

³ Fletcher, S. R.; Baker, R.; Chambers, M. S.; Herbert, R. H.; Hobbs, S. C.; Thomas, S. R.; Verrier, H. M.; Watt, A. P.; Ball, R. G. J. Org. Chem. **1994**, *59*, 1771.

(+)-5-[(1'R,2'S,4'S)-7-methyl-7-azabicyclo[2.2.1]heptan-2-yl]-2-

chloropyridine: (*N*-methyl-epibatidine, 14): To a THF solution (2 mL) of H_3C LiAlH₄ (72 mg, 1.90 mmol, 5.0 eq.) and Et₃N•HCl (262 mg, 1.90 mmol, 5.0 eq.) in an ice bath, was slowly added a solution of formamide 13 (90 mg, 0.380

mmol, 1.0 eq.) in THF (2 mL). The reaction mixture was allowed to be stirred at room temperature overnight. Upon completion of the reaction monitored by TLC analysis, chilled CH₂Cl₂ (1 mL) was added, followed by slow addition of a NaOH solution (10%, 1.5 mL). The reaction mixture was allowed to be stirred for another 10 min until white precipitate has been settled down. After separation of the precipitate, the fitrate was concentrated concentrated under reduced pressure to give a crude product. Purification of the crude product by flash chromatography on silica gel, using MeOH/CH₂Cl₂/NEt₃ as the eluant to give the titled product as a yellow solid (64 mg, 0.287 mmol, 76%): mp 76-78 °C, $R_f =$ 0.28; MeOH/CH₂Cl₂ = 1/20; $[\alpha]_D^{25}$ +18.5 (c: 1.0, CHCl₃); ¹H-NMR (400 MHz, 25 °C, CDCl₃, δ): 1.34-1.44 (m, 2H, H-5 and H-6), 1.58-1.66 (m, 1H, H-3), 1.80 (dd, J = 9.6 and 11.6 Hz, 1H, H-3 endo), 1.84-1.94 (m, 2H, H-5 and H-6), 2.21 (s, 3H, NCH₃) 2.61 (dd, J = 4.8 and 9.2 Hz, 1H, H-2), 3.09 (d, J = 4.0Hz, 1H, H-1), 3.29 (t, J = 4.0 Hz, 1H, H-4), 7.17 (d, J = 8.4 Hz, 1H, H-3 in pyridine), 7.85 (dd, J = 2.0and 8.0 Hz, 1H, H-4 in pyridine), 8.25 (d, J = 2.0 Hz, 1H, H-6 in pyridine); ¹³C-NMR (100 MHz, 25 °C, CDCl₃, δ): 25.4 (t, C-5), 26.3 (t, C-6), 34.5 (q, NCH₃), 41.5 (t, C-3), 45.3 (d, C-2), 61.1 (d, C-4), 67.4 (d, C-1), 123.6 (d, C-3 in pyridine), 138.0 (d, C-4 in pyridine), 141.7 (s, C-5 in pyridine), 148.6 (s, C-2 in pyridine), 148.8 (d, C-6 in pyridine); EI-HRMS (m/z): $[M]^+$ calcd for $C_{12}H_{15}CIN_2^+$, 222.0924; found, 222.0927 ($\Delta = 1.4$ ppm).

HPLC condition: Chiralcel OD-H, 250 mm X 4.6 mm, 5 μ m; Mobile phase A: 0.1% Et₂NH in an IPA/n-Hex solution (v/v = 1/15); Mobile phase B: pure n-Hex; isocratic, 50% A : 50% B; flow rate 1.0 mL per min; detection UV 273 nm, t_R : 6.6 min for (–)-14, 7.9 min for (+)-14.

Table 1.	Crystal	data an	d structure	refinement	for 4a .

Identification code	corn	
Empirical formula	C25 H26 N2 O5	
Formula weight	434.48	
Temperature	150(2) K	
Wavelength	1.54178 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 8.2328(2) Å	α= 90°.
	b = 12.2627(2) Å	β= 90°.
	c = 21.8139(4) Å	$\gamma = 90^{\circ}$.
Volume	2202.25(8) Å ³	
Ζ	4	
Density (calculated)	1.310 Mg/m ³	
Absorption coefficient	0.750 mm ⁻¹	
F(000)	920	
Crystal size	$0.42 \text{ x} 0.40 \text{ x} 0.32 \text{ mm}^3$	
Theta range for data collection	4.05 to 72.34°.	
Index ranges	-9<=h<=10, -9<=k<=14, -26<=l<=19	
Reflections collected	8398	
Independent reflections	4239 [R(int) = 0.0196]	
Completeness to theta = 72.34°	98.9 %	
Absorption correction	Semi-empirical from equivalent	nts
Max. and min. transmission	1.00000 and 0.96097	
Refinement method	Full-matrix least-squares on F	2
Data / restraints / parameters	4239 / 0 / 290	
Goodness-of-fit on F ²	1.013	
Final R indices [I>2sigma(I)]	R1 = 0.0315, $wR2 = 0.0839$	
R indices (all data)	R1 = 0.0338, $wR2 = 0.0855$	
Absolute structure parameter	0.07(15)	
Extinction coefficient	0.0038(3)	
Largest diff. peak and hole	0.180 and -0.142 e.Å ⁻³	

	Х	у	Z	U(eq)
O(1)	2288(1)	3644(1)	1364(1)	26(1)
O(2)	2368(2)	5290(1)	896(1)	35(1)
O(3)	-1037(2)	4695(1)	1840(1)	34(1)
O(4)	-2567(1)	1506(1)	1442(1)	34(1)
O(5)	-1535(1)	1229(1)	2374(1)	30(1)
N(1)	814(2)	3901(1)	517(1)	26(1)
N(2)	-1493(2)	2929(1)	2029(1)	22(1)
C(1)	3336(2)	3584(1)	2921(1)	28(1)
C(2)	3513(2)	2840(2)	3397(1)	36(1)
C(3)	3954(2)	1777(2)	3272(1)	38(1)
C(4)	4207(2)	1449(1)	2671(1)	35(1)
C(5)	4028(2)	2185(1)	2197(1)	30(1)
C(6)	3593(2)	3263(1)	2318(1)	24(1)
C(7)	3430(2)	4074(1)	1807(1)	28(1)
C(8)	1842(2)	4368(1)	924(1)	25(1)
C(9)	-308(2)	3000(1)	660(1)	25(1)
C(10)	-819(2)	2646(2)	13(1)	35(1)
C(11)	-787(2)	3734(2)	-351(1)	42(1)
C(12)	-328(2)	4563(2)	145(1)	33(1)
C(13)	-1773(2)	4705(1)	587(1)	35(1)
C(14)	-1767(2)	3626(1)	956(1)	25(1)
C(15)	-1430(2)	3820(1)	1632(1)	24(1)
C(16)	-1930(2)	1860(1)	1896(1)	25(1)
C(17)	-576(2)	1844(1)	2814(1)	28(1)
C(18)	-913(2)	3038(1)	2662(1)	21(1)
C(19)	-2158(2)	3584(1)	3084(1)	25(1)
C(20)	-1453(2)	3702(1)	3719(1)	23(1)
C(21)	-1849(2)	2978(1)	4182(1)	36(1)
C(22)	-1079(3)	3033(2)	4746(1)	45(1)
C(23)	100(2)	3816(2)	4854(1)	40(1)
C(24)	483(2)	4552(1)	4400(1)	36(1)
C(25)	-289(2)	4497(1)	3834(1)	29(1)

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for **4a**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table 3.	Bond lengths [Å] and angles [°] for 4a.	

O(1) $O(0)$	1.2570(17)
O(1)- $C(8)$	1.3570(17)
O(1)-C(7)	1.4491(17)
O(2)-C(8)	1.2122(18)
O(3)-C(15)	1.2094(18)
O(4)-C(16)	1.2020(18)
O(5)-C(16)	1.3390(18)
O(5)-C(17)	1.4548(18)
N(1)-C(8)	1.356(2)
N(1)-C(9)	1.4725(19)
N(1)-C(12)	1.4829(19)
N(2)-C(16)	1.3903(18)
N(2)-C(15)	1.3959(18)
N(2)-C(18)	1.4677(17)
C(1)-C(2)	1.389(2)
C(1)-C(6)	1.391(2)
C(1)-H(1A)	0.9500
C(2)-C(3)	1.381(3)
C(2)-H(2A)	0.9500
C(3)-C(4)	1.387(2)
C(3)-H(3A)	0.9500
C(4)-C(5)	1.379(2)
C(4)-H(4A)	0.9500
C(5)-C(6)	1.394(2)
C(5)-H(5A)	0.9500
C(6)-C(7)	1.499(2)
C(7)-H(7A)	0.9900
C(7)-H(7B)	0.9900
C(9)-C(10)	1.535(2)
C(9)-C(14)	1.5650(19)
C(9)-H(9A)	1.0000
C(10)-C(11)	1.552(3)
C(10)-H(10A)	0.9900
С(10)-Н(10В)	0.9900
C(11)-C(12)	1.533(2)
C(11) - H(11A)	0.9900
C(11) - H(11B)	0.9900
C(12)-C(13)	1.541(2)
C(12) - H(12A)	1.0000
C(12) - C(14)	1.549(2)
C(13)-H(13A)	0.9900
C(13)-H(13R)	0.9900
C(14)-C(15)	1.520(2)
C(14)-C(15)	1.0000
C(17)-C(18)	1.526(2)
C(17) - H(17A)	0.0000
C(17) H(17R)	0.9900
$\mathcal{O}(1/)$ - $\Pi(1/D)$	0.9900

C(18)-C(19)	1.5310(19)
C(18)-H(18A)	1.0000
C(19)-C(20)	1.5089(19)
C(19)-H(19A)	0.9900
C(19)-H(19B)	0.9900
C(20)-C(21)	1.384(2)
C(20)-C(25)	1.390(2)
C(21)-C(22)	1.386(2)
C(21)-H(21A)	0.9500
C(22)-C(23)	1.385(3)
C(22)-H(22A)	0.9500
C(23)-C(24)	1.376(3)
C(23)-H(23A)	0.9500
C(24)-C(25)	1.390(2)
C(24)-H(24A)	0.9500
C(25)-H(25A)	0.9500
C(8)-O(1)-C(7)	114.11(11)
C(16)-O(5)-C(17)	110.24(11)
C(8)-N(1)-C(9)	124.73(12)
C(8)-N(1)-C(12)	121.51(13)
C(9)-N(1)-C(12)	97.42(12)
C(16)-N(2)-C(15)	128.16(12)
C(16)-N(2)-C(18)	111.53(11)
C(15)-N(2)-C(18)	120.08(11)
C(2)-C(1)-C(6)	120.38(15)
C(2)-C(1)-H(1A)	119.8
C(6)-C(1)-H(1A)	119.8
C(1)-C(2)-C(3)	119.98(16)
C(1)-C(2)-H(2A)	120.0
C(3)-C(2)-H(2A)	120.0
C(4)-C(3)-C(2)	120.02(16)
C(4)-C(3)-H(3A)	120.0
C(2)-C(3)-H(3A)	120.0
C(3)-C(4)-C(5)	120.12(16)
C(3)-C(4)-H(4A)	119.9
C(5)-C(4)-H(4A)	119.9
C(4)-C(5)-C(6)	120.45(15)
C(4)-C(5)-H(5A)	119.8
C(6)-C(5)-H(5A)	119.8
C(1)-C(6)-C(5)	119.06(14)
C(1)-C(6)-C(7)	120.10(14)
C(5)-C(6)-C(7)	120.83(14)
O(1)-C(7)-C(6)	108.18(12)
O(1)-C(7)-H(7A)	110.1
C(6)-C(7)-H(7A)	110.1
O(1)-C(7)-H(7B)	110.1
C(6)-C(7)-H(7B)	110.1
H(7A)-C(7)-H(7B)	108.4

O(2)-C(8)-O(1)	123.41(14)
O(2)-C(8)-N(1)	125.70(14)
O(1)-C(8)-N(1)	110.81(13)
N(1)-C(9)-C(10)	100.91(12)
N(1)-C(9)-C(14)	101.60(11)
C(10)-C(9)-C(14)	107.89(12)
N(1)-C(9)-H(9A)	114.9
C(10)-C(9)-H(9A)	114.9
C(14)-C(9)-H(9A)	114.9
C(9)-C(10)-C(11)	102.87(13)
C(9)-C(10)-H(10A)	111.2
C(11)-C(10)-H(10A)	111.2
C(9)-C(10)-H(10B)	111.2
C(11)-C(10)-H(10B)	111.2
H(10A)-C(10)-H(10B)	109.1
C(12)-C(11)-C(10)	102.30(12)
C(12)-C(11)-H(11A)	111.3
C(10)-C(11)-H(11A)	111.3
C(12)-C(11)-H(11B)	111.3
C(10)-C(11)-H(11B)	111.3
H(11A)-C(11)-H(11B)	109.2
N(1)-C(12)-C(11)	100.29(13)
N(1)-C(12)-C(13)	102.10(11)
C(11)-C(12)-C(13)	109.03(15)
N(1)-C(12)-H(12A)	114.6
C(11)-C(12)-H(12A)	114.6
C(13)-C(12)-H(12A)	114.6
C(12)-C(13)-C(14)	103.06(13)
C(12)-C(13)-H(13A)	111.2
C(14)-C(13)-H(13A)	111.2
C(12)-C(13)-H(13B)	111.2
C(14)-C(13)-H(13B)	111.2
H(13A)-C(13)-H(13B)	109.1
C(15)-C(14)-C(13)	111 78(13)
C(15)-C(14)-C(9)	109.71(12)
C(13)-C(14)-C(9)	101.94(12)
C(15)-C(14)-H(14A)	111.0
C(13)-C(14)-H(14A)	111.0
C(9)-C(14)-H(14A)	111.0
O(3)-C(15)-N(2)	118.08(13)
O(3)-C(15)-C(14)	12358(13)
N(2)-C(15)-C(14)	11824(12)
O(4)-C(16)-O(5)	$122\ 60(14)$
O(4)-C(16)-N(2)	122.00(14) 128.76(14)
O(5)-C(16)-N(2)	108.64(12)
O(5)-C(17)-C(18)	100.01(12) 104 83(11)
O(5)-C(17)-H(17A)	110.8
C(18)-C(17)-H(17A)	110.8
O(5)-C(17)-H(17B)	110.8
, ,	

C(18)-C(17)-H(17B)	110.8
H(17A)-C(17)-H(17B)	108.9
N(2)-C(18)-C(17)	100.15(10)
N(2)-C(18)-C(19)	112.71(11)
C(17)-C(18)-C(19)	114.25(12)
N(2)-C(18)-H(18A)	109.8
C(17)-C(18)-H(18A)	109.8
C(19)-C(18)-H(18A)	109.8
C(20)-C(19)-C(18)	109.56(11)
C(20)-C(19)-H(19A)	109.8
C(18)-C(19)-H(19A)	109.8
C(20)-C(19)-H(19B)	109.8
C(18)-C(19)-H(19B)	109.8
H(19A)-C(19)-H(19B)	108.2
C(21)-C(20)-C(25)	118.68(14)
C(21)-C(20)-C(19)	121.18(14)
C(25)-C(20)-C(19)	119.95(13)
C(20)-C(21)-C(22)	120.62(16)
C(20)-C(21)-H(21A)	119.7
C(22)-C(21)-H(21A)	119.7
C(23)-C(22)-C(21)	120.35(16)
C(23)-C(22)-H(22A)	119.8
C(21)-C(22)-H(22A)	119.8
C(24)-C(23)-C(22)	119.48(15)
C(24)-C(23)-H(23A)	120.3
C(22)-C(23)-H(23A)	120.3
C(23)-C(24)-C(25)	120.18(16)
C(23)-C(24)-H(24A)	119.9
C(25)-C(24)-H(24A)	119.9
C(20)-C(25)-C(24)	120.66(15)
C(20)-C(25)-H(25A)	119.7
C(24)-C(25)-H(25A)	119.7

Symmetry transformations used to generate equivalent atoms:

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	U ¹²
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)	-2(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)	-8(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1)	-1(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)	-5(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1)	-2(1)
N(2)23(1)22(1)20(1) $-3(1)$ 0C(1)18(1)34(1)32(1) $-6(1)$ -2 C(2)28(1)53(1)26(1)1(1) -2 C(3)30(1)44(1)41(1)16(1) -6 C(4)30(1)28(1)47(1)1(1) -1 C(5)24(1)32(1)33(1) $-5(1)$ -2 C(6)15(1)30(1)27(1) $-2(1)$ -2 C(7)27(1)28(1)29(1) $-1(1)$ -7 C(8)24(1)28(1)23(1)2(1)3C(9)24(1)30(1)21(1) $-6(1)$ -7 C(10)28(1)52(1)25(1) $-15(1)$ 0C(11)38(1)70(1)19(1) $-2(1)$ -2 C(12)34(1)45(1)21(1)9(1) -7 C(13)36(1)43(1)25(1)7(1) -2 C(14)23(1)33(1)20(1)0(1) -2 C(15)24(1)25(1)22(1)0(1) -2 C(16)20(1)26(1)29(1) $-4(1)$ 4 C(17)32(1)27(1)26(1)0(1) -4 C(18)19(1)23(1)19(1) $-1(1)$ -4 C(20)23(1)25(1)21(1) $-4(1)$ 3C(21)49(1)32(1)25(1) $-2(1)$ 4C(22)74(1)36(1)24(1)3(1) -2	(1)	1(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1)	-1(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)	4(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)	0(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)	-5(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)	2(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)	3(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)	0(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)	-5(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1)	3(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)	0(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1)	-1(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)	4(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)	6(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)	14(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)	6(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1)	4(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1)	-3(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)	2(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)	-2(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1)	1(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1)	2(1)
C(22) 74(1) 36(1) 24(1) 3(1) -2	1)	-10(1)
	(1)	-1(1)
C(23) 48(1) 47(1) 26(1) -10(1) -1	(1)	17(1)
C(24) 30(1) 42(1) 37(1) -17(1) -7	(1)	-1(1)
C(25) 30(1) 28(1) 28(1) -4(1) 5	1)	-3(1)

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for **4a**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

	Х	У	Z	U(eq)
	2027	4217	2000	24
H(IA)	3037	4316	3009	34
H(2A)	3331	3063	3808	43
H(3A)	4085	1270	3597	46
H(4A)	4505	717	2585	42
H(5A)	4202	1956	1786	35
H(7A)	3033	4779	1970	34
H(7B)	4499	4198	1611	34
H(9A)	164	2408	919	30
H(10A)	-1921	2323	14	42
H(10B)	-44	2112	-161	42
H(11A)	35	3713	-682	51
H(11B)	-1864	3899	-530	51
H(12A)	137	5261	-15	40
H(13A)	-2803	4797	359	42
H(13B)	-1611	5341	859	42
H(14A)	-2807	3218	897	30
H(17A)	594	1676	2769	34
H(17B)	-916	1673	3239	34
H(18A)	126	3460	2669	25
H(19A)	-2448	4311	2919	30
H(19B)	-3158	3137	3101	30
H(21A)	-2656	2438	4112	43
H(22A)	-1361	2531	5060	54
H(23A)	640	3844	5239	48
H(24A)	1276	5099	4474	44
H(25A)	-18	5008	3523	34

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **4a**.

12 ¹³C NMR

13¹H NMR

