Supplementary Information

Synthesis of (-)-Epibatidine

Wen-Hua Chiou* and Yu-Min Chiang

wchiou@dragon.nchu.edu.tw

Department of Chemistry, National Chung Hsing University, Taichung 402 Taiwan, R.O.C.

Table of Contents

General methods and materials 2
Procedures to synthesize all compounds. 3
Crystal data and structure refinement for oxazolidinone 4a
40
Copies of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of all compounds 26

General Methods: TLC analyses were performed on 0.25 mm silica gel plates, and were visualized with UV light, iodine chamber, 10% sulfuric acid or 10% PMA solution. Melting points were measured by means of open capillaries. All NMR spectra, i.e., ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}, \mathrm{DEPT}, \mathrm{DQF}-\mathrm{gCOSY}, \mathrm{gHSQC}, \mathrm{gHMBC}$, and NOE difference, were recorded on either 600 or 400 MHz NMR spectrometer, which provided all necessary data for the full assignment of each compound. HPLC analyses were carried out on a highpressure mixing system with two pumps and a photodiodearray dectector. The mass analyzer used for the HRMS is double focusing magnetic sector. The specific rotation values were recorded on the wavelength of 589 nm .

Materials: Chemicals, reagents and solvents were purchased from commercial suppliers. The reagents were used as received. Dichloromethane, pyridine, triethylamine, acetonitrile, DMSO and methanol were dried and distilled over calcium hydride under argon before use. Ether was dried and distilled over sodium-benzophenone ketyl under argon before use. THF was dried and distilled over potassium metal under argon before use. Toluene and benzene were dried and distilled over sodium metal under argon or argon before use. The reaction flasks were dried in a $110{ }^{\circ} \mathrm{C}$ oven and allowed to cool to room temperature in a desiccator over calcium sulfate and assembled under argon atmosphere.

Separation of oxazolidinone diastereomers:

The racemic acid 3 ($413 \mathrm{mg}, 1.50 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was dissolved in one part of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\sim 5 \mathrm{M})$. To the solution in an ice bath, was added SOCl_{2} (3.0 eq.) followed by a drop of DMF under argon. Upon completion of addition, the ice bath was removed and the reaction mixture was allowed to be stirred at room temperature for 16 h . The reaction mixture was concentrated under reduced pressure to remove volatile substances, to yield a crude residue. The crude residue was diluted with one part of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the crude acid chloride solution.

To a THF solution of ($4 S$)-bezyl-2-oxazolidinone ($319 \mathrm{mg}, 1.80 \mathrm{mmol}, 1.2 \mathrm{eq} ., \sim 0.3 \mathrm{M}$) at -50 ${ }^{\circ} \mathrm{C}$ under argon, $\mathrm{BuLi}(1.2 \mathrm{~mL}, 1.3$ eq., 1.6 M in hexane) was slowly added by an additional funnel. The reaction mixture was allowed to be stirred at $-50^{\circ} \mathrm{C}$ for 1 h . The acid chloride solution was slowly cannulated to the oxazolidinone solution. The addition rate of the acid chloride solution was controlled so that the internal temperature was in the range between -40 to $-50^{\circ} \mathrm{C}$. The resulting reaction mixture was allowed to be stirred at the temperature for 6 h . Upon completion of the reaction monitored by TLC analysis, chilled saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added to quench the reaction, and the reaction mixture was concentrated under reduced pressure to remove excess organic solvent to yield a residue. The residue was partitioned with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The resulting aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (X5). The combined organic layers were washed dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated to give crude product. Purification of the crude product by flash chromatography on silica gel, using $\mathrm{EtOAc} / \mathrm{n}-\mathrm{Hex}$ as the eluant afforded the titled product.

3-[(1R,2S,4S)-7-benzyloxycarbonyl-7-azabicyclo[2.2.1]heptane-2-carbonyl]-(4S)-benzyl-2-
oxazolidinone (4a): $290 \mathrm{mg}, 0.667 \mathrm{mmol}$, 44%; white solid, $\mathrm{mp} 167-168^{\circ} \mathrm{C}$; $R_{f} \mathrm{Cbz}$ $=0.37, \mathrm{EtOAc} / \mathrm{n}-\mathrm{Hex}=1 / 2 ;[\alpha]_{\mathrm{D}}{ }^{25}+25.6\left(c: 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.25^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta\right): 1.47(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.89(\mathrm{~m}, 2 \mathrm{H})$,
 $2.49(\mathrm{ddd}, J=5.2,5.2$ and $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.82(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=5.2$ and 8.4 $\mathrm{Hz}, 1 \mathrm{H}$), 3.70 (brs, 0.5 H), 3.97 (brs, 0.5 H), 4.08-4.20 (m, 1H), 4.25 (brs, 0.5H), 4.38-4.45 (m, 2H), 4.63$4.68(\mathrm{~m}, 0.5 \mathrm{H}), 4.94-5.15(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.40(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta\right): 28.9(\mathrm{t})$, $29.6(t), 31.8(t), 37.6(t), 47.7$ (d), 55.4 (d), 56.3 (d), 60.2 (d), $66.2(t), 66.8(t), 127.2^{\# 1}$ (d), $127.9^{\#}(\mathrm{~d})$,

[^0]$128.36^{\#}$ (d), $128.38^{\#}$ (d), $128.8^{\#}$ (d), $129.3^{\#}$ (d), 135.2 (s$), 136.5$ (s$), 153.5$ (s$), 155.1$ (s$), 172.2$ (s$)$; EIHRMS (m/z): $[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}, 434.1842$; found, 434.1832 ($\Delta=2.3 \mathrm{ppm}$).

3-[(1S,2R,4R)-7-benzyloxycarbonyl-7-azabicyclo[2.2.1]heptane-2-carbonyl]-(4S)-benzyl-2-

oxazolidinone (4b): $270 \mathrm{mg}, 0.621 \mathrm{mmol}, 41 \%$; white solid, $\mathrm{mp} 110-111{ }^{\circ} \mathrm{C} ; R_{f} \mathrm{Cbz}$
$=0.29 ; \mathrm{EtOAc} / \mathrm{n}-\mathrm{Hex}=1 / 2 ;[\alpha]_{\mathrm{D}}{ }^{25}+83.5\left(c: 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.25^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta\right): 1.43-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{t}, J=8.4 \mathrm{~Hz}$, 1 H), 1.81-1.94 (m, 2H), 2.50 (brs, 1.5 H), 2.78 (brs, 0.5 H), 3.08 (brs, 0.5 H), 3.30
 (brs, 0.5 H), $3.58(\mathrm{dd}, J=5.2$, and $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.18 (brs, 2H), 4.44 (brs, 1 H), 4.60 (brs, 2 H), 4.84-5.24 (m, 2H), 7.00-7.60 (m, 10H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, 25^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta\right): 28.7^{*}(\mathrm{t}), 29.5^{*}(\mathrm{t}), 31.8(\mathrm{t}), 37.5$ (t), 47.5 (d), 55.3 (d), 56.1 (d), 60.1 (d), 66.3 (t), 66.8 (t), 127.1 (d), 127.8 (d, 2C), 128.3 (d, 2C), 128.8 (d, 3C), 129.4 (d, 2C), 135.3 (s), 136.5 (s), 153.5 (s), 154.9 (s), 172.2 (s); EI-HRMS (m/z): [M] ${ }^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}, 434.1842$; found, 434.1834 ($\Delta=1.8 \mathrm{ppm}$).

Hydrolysis of the oxazolidinone derivatives:

To a THF solution (2.5 mL) of oxazolidinone $4(0.44 \mathrm{mmol}, 1.0$ eq. $)$ in an ice bath, $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$ ($29.6 \mathrm{mg}, 0.70 \mathrm{mmol}, 1.6$ eq.) was added followed by $\mathrm{H}_{2} \mathrm{O}_{2}(35 \%, 180 \mu \mathrm{~L}, 2 \mathrm{mmol}, 4$ eq.). The reaction mixture was allowed to be stirred at room temperature for 2 h . Upon completion of the reaction monitored by TLC analysis, a $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution (0.2 g dissolved in 1.5 mL) was added to quench the reaction, and the reaction mixture was concentrated under reduced pressure to remove excess organic solvent. $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added to the aqueous solution. The resulting aqueous solution was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL} \mathrm{X} 5)$, and covered with EtOAc (10 mL). The bilayer solution was acidified with a HCl solution (3 N) until pH was around 2. White precipitate was observed during acidification. After separation of the organic layer, the resulting aqueous layer was extracted with EtOAc (10 mL X 5). The combined organic layers were washed with brine (10 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated to give the crude acid. Purification of the crude acid product by flash chromatography on silica gel, using EtOAc/n-Hex/AcOH as the eluant, gave the titled product as a colorless oil.

HPLC condition: CHIRACEL OD-H, $4.6 \mathrm{~mm} \mathrm{X} 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$; Mobile phase A: 0.5% TFA in an IPA $/ n$-Hex solution ($\mathrm{v} / \mathrm{v}=1 / 10$); Mobile phase B: 0.5% TFA in pure n-Hex; isocratic, $50 \% \mathrm{~A}: 50 \% \mathrm{~B}$; flow rate 1.0 mL per min ; detection UV $215 \mathrm{~nm}, t_{\mathrm{R}}: 18.4 \mathrm{~min}$ for $(+) \mathbf{- 3}, 26.3 \mathrm{~min}$ for ($(-) \mathbf{- 3}$.

	Retention Time	Area	\% Area	Height
1	18.426	18454909	49.31	432817
2	26.317	18972776	50.69	313734

(-)-(1R,2S,4S)-7-benzyloxycarbonyl-7-azabicyclo[2.2.1]heptane-2-carboxylic acid (-)-3: 98\%; colorless oil, $R_{f}=0.24 ; \mathrm{EtOAc} / \mathrm{n}-\mathrm{Hex}=1 / 4 ;[\alpha]_{\mathrm{D}}{ }^{25}-8.6\left(c: 1.0, \mathrm{CHCl}_{3}\right) ; t_{\mathrm{R}}: 26.5 \mathrm{~min}$ for $(-)-3$.

(+)-(1S,2R,4R)-7-benzyloxycarbonyl-7-azabicyclo[2.2.1]heptane-2-carboxylic acid (+)-3: 93\%; colorless oil, $R_{f}=0.24 ; \mathrm{EtOAc} / \mathrm{n}-\mathrm{Hex}=1 / 4 ;[\alpha]_{\mathrm{D}}{ }^{25}+8.8\left(c: 1.0, \mathrm{CHCl}_{3}\right) ; t_{\mathrm{R}}: 18.4 \mathrm{~min}$ for $(+)-3$.

(-)-(1R,2S,4S)-7-benzyloxycarbonyl-7-azabicyclo[2.2.1]heptane-2-methanol

(5): To a solution of the acid $3(9.16 \mathrm{~g}, 33.3 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in THF (80 \mathrm{~mL}$) in an ice bath, was slowly added $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ solution (2 M , in THF, $35 \mathrm{~mL}, 69.9 \mathrm{mmol}$,
 2.1 eq.). The reaction mixture was allowed to be stirred at room temperature for 5 h . Upon completion of the reaction monitored by TLC analysis, chilled water (48 mL) was added to quench the reaction, and the reaction mixture was concentrated under reduced pressure to remove excess organic solvent. The aqueous solution was partitioned with EtOAc $(40 \mathrm{~mL})$ and water $(80 \mathrm{~mL})$. The resulting aqueous layer was extracted with EtOAc (20 mL X5). The combined organic layers were washed with saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$, brine $(30 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solid dehydrating agent, the organic layer was concentrated under reduced pressure to give a crude product. Purification of the crude product by flash chromatography on silica gel, using EtOAc/n-Hex as the eluant, gave the titled product as a colorless oil ($8.35 \mathrm{~g}, 32.0 \mathrm{mmol}, 96 \%$): $R_{f}=0.36, \mathrm{EtOAc} / \mathrm{n}-\mathrm{Hex}=4 / 1$; $[\alpha]_{\mathrm{D}}{ }^{24}-19.4\left(c: 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta\right): 1.14-1.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3$ exo), 1.301.42 (m, 2H, H-5 and H-6), 1.45 (dd, $J=8.4$ and $12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ endo), 1.70 (br, 2H, H-5 and H-6), 1.84-1.91 (m, 1H, H-2), 3.19-3.29 (m, 2H, $\mathrm{CH}_{2} \mathrm{OH}$), 3.80-4.10 (br, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$), 4.24 (brs, $2 \mathrm{H}, \mathrm{H}-1$ and $\mathrm{H}-4$), 5.04 (brs, $2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ph}$), 7.21-7.28 (m, 1H, H-4' in Ph), 7.27-7.31 (m, 4H, H-2' and H-3' in Ph); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta\right): 28.7$ (t, 2C, C-5 and C-6), 32.9 (t, C-3), 45.1 (d, C-2), 55.4 (d, $\mathrm{C}-4), 57.1$ (d, C-1), 64.1 (t, $\underline{\mathrm{CH}}_{2} \mathrm{OH}$), 66.2 (t, $\mathrm{OCH}_{2} \mathrm{Ph}$), 127.2 (d, C-2 in Ph), 127.4 (d, C-4 in Ph), 127.9 (d, C-3 in Ph), 136.2 ($\mathrm{s}, \mathrm{C}-1$ in Ph), 155.2 ($\mathrm{s}, \mathrm{N}-\underline{\mathrm{CO}}-\mathrm{O}$). EI-HRMS (m/z): [M] ${ }^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3}{ }^{+}$, 261.1365 ; found, $261.1368(\Delta=1.1 \mathrm{ppm})$.

HPLC condition: Chiralcel OD-H, 250 mm X $4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$; Mobile phase A: IPA: n -Hex $=1: 15$ (v / v); Mobile phase B: pure n -Hex; isocratic, $50 \% \mathrm{~A}: 50 \% \mathrm{~B}$; flow rate 1.0 mL per min; detection UV $215 \mathrm{~nm}, t_{\mathrm{R}}: 25.9 \mathrm{~min}$ for $(+)-5,28.5 \mathrm{~min}$ for $(-)-5$.

	Retention Time	Area	\% Area	Height
1	25.932	9340012	49.52	196658
2	28.545	9521818	50.48	189645

(+)-(1R,2S,4S)-7-benzyloxycarbonyl-7-azabicyclo[2.2.1]heptane-2-carbaldehyde

(6): To a solution of alcohol $5(5.52 \mathrm{~g}, 21.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in \mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ in
 an ice bath, was slowly added Dess-Martin periodinane reagent ($10.75 \mathrm{~g}, 25.34$ mmol, 1.2 eq.) in $\sim 3 \mathrm{~g}$ portions. The reaction mixture was allowed to be stirred at room temperature for 3 h . Upon completion of the reaction monitored by TLC analysis, chilled saturated NaHCO_{3} (245 mL) was added, followed by filtration with a celite pad to yield a fitrate. After separation of the organic layer, the resulting aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL} \mathrm{X} 5)$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solid dehydrating agent, the organic layers was concentrated under reduced pressure to give a crude product. Purification of the crude product by flash chromatography on silica gel, using EtOAc/n-Hex as the eluant, gave the titled product as a colorless oil $(5.10 \mathrm{~g}, 19.7 \mathrm{mmol}, 93 \%): R_{f}=0.28, \mathrm{EtOAc} / \mathrm{n}-\mathrm{Hex}=1 / 2 ;[\alpha]_{\mathrm{D}}{ }^{23}+11.5\left(c: 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, 25^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta\right): 1.34-1.50(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ and H-6), 1.64-1.82 (m, 2H, H-5 and H-6), 2.08$2.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 2.44(\mathrm{dd}, J=4.4$ and $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.30$ (brs, $1 \mathrm{H}, \mathrm{H}-4$), 4.52 (brs, $1 \mathrm{H}, \mathrm{H}-1$), $4.92-$ 5.05 (m, 2H, -OCH2 \underline{H}_{2}), 7.20-7.29 (m, 5H, -Ph), $9.50(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHO}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right.$,) : 28.9 (t, 2C, C-5 and C-6), $29.8(\mathrm{t}, \mathrm{C}-3), 54.5(\mathrm{~d}, \mathrm{C}-2), 55.8(\mathrm{~d}, \mathrm{C}-4), 55.6(\mathrm{~d}, \mathrm{C}-1), 66.5\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{Ph}\right)$, 127.5 (d, C-2 in Ph), 127.6 (d, C-4 in Ph), 128.0 (d, C-3 in Ph), 136.0 (s, C-1 in Ph), 154.7 (s, N-CO-O), 200.3 (d, $\underline{\mathrm{CHO}}$); EI-HRMS (m/z): [M] ${ }^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3}{ }^{+}, 259.1208$; found, 259.1201 ($\Delta=2.7 \mathrm{ppm}$).

2-[(1R,2S,4S)-7-benzyloxycarbonyl-7-azabicyclo[2.2.1]heptan-2-yl]-

methoxyethene (7): To a solution of methoxymethyltriphenylphosphonium chloride $\left(\mathrm{Ph}_{3} \mathrm{PCH}_{2} \mathrm{OCH}_{3} \cdot \mathrm{Cl}, 4.49 \mathrm{~g}, 13.1 \mathrm{mmol}, 2.0\right.$ eq.) in THF (60 mL) at -50
 ${ }^{\circ} \mathrm{C}$, was slowly added NaHMDS solution (2.0 M in THF, $6.5 \mathrm{~mL}, 13.1 \mathrm{mmol}, 2.0$ eq.). After stirred at $-50^{\circ} \mathrm{C}$ for 30 min , the yellow solution became an orange solution. To the ylide solution at $-50^{\circ} \mathrm{C}$, was slowly added an aldehyde $6(1.700 \mathrm{~g}, 6.556 \mathrm{mmol}, 1.0$ eq.) solution in THF (20 mL). The reaction mixture was allowed to be stirred at room temperature for 4 h . Upon completion of the reaction monitored by TLC analysis, the solution was concentrated under reduced pressure to a crude reside. The crude residue was partitioned with ether $(75 \mathrm{~mL})$ and water $(75 \mathrm{~mL})$. After separation of the organic layer, the resulting aqueous layer was extracted with ether (20 mL X). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated under reduced pressure to give a crude product. Purification of the crude product by flash chromatography on silica gel, using EtOAc/n-Hex as the eluant, gave the titled product as a colorless oil ($1.658 \mathrm{~g}, 5.769 \mathrm{mmol}, 88 \%$) : $R_{f}=0.59, \mathrm{EtOAc} / \mathrm{n}-$ Hex $=1 / 2 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta\right): 1.28-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.78(\mathrm{~m}, 3 \mathrm{H}), 2.17-2.23(\mathrm{~m}$, $0.6 \mathrm{H}), 2.70-2.76(\mathrm{~m}, 0.4 \mathrm{H}), 3.35(\mathrm{brs}, 1.8 \mathrm{H}), 3.50(\mathrm{~s}, 1.2 \mathrm{H}), 4.01(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.34(\mathrm{~m}$, $1.5 \mathrm{H}), 4.59(\mathrm{t}, J=9.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.02-5.14(\mathrm{~m}, 2 \mathrm{H}), 5.70(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 6.27(\mathrm{~d}, J=12.8 \mathrm{~Hz}$, $0.6 \mathrm{H}), 7.20-7.44(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, 25^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta\right): 28.7(\mathrm{t}, 4 \mathrm{C}), 37.8(\mathrm{t}), 40.0(\mathrm{t}), 41.9(\mathrm{~d}$, 2C), 55.2 (q), 55.7 (d), 55.8 (d), 59.1 (q), 61.5 (d), $62.0(\mathrm{~d}), 66.17$ (t), 66.21 (t), 106.6 (d), 110.7 (d), 127.44 (d, 2C), 127.46 (d, 2C), 127.51 (d), 127.56 (d), 128.04 (d, 2C), 128.09 (d, 2C), 136.6 ($\mathrm{s}, 2 \mathrm{C}$), 144.7 (d), 146.2 (d), 155.2 (s, 2C); EI-HRMS (m/z): [M] ${ }^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3}{ }^{+}, 287.1521$; found, 287.1511 ($\Delta=3.5 \mathrm{ppm})$.

(-)-(1R,2S,4S)-7-benzyloxycarbonyl-7-azabicyclo[2.2.1]heptan-2-

ylacetaldehyde (8): To a solution of enol ether $7(4.61 \mathrm{~g}, 16.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in$ THF (70 mL) in an ice bath, was slowly added HCl solution (1 M in THF, 16 mL).
 The reaction mixture was allowed to be stirred at room temperature for 2 h . Upon completion of the reaction monitored by TLC analysis, the reaction mixture was concentrated under reduced pressure to afford a residue. The crude residue was partitioned with EtOAc (40 mL) and water (40 mL). After separation of the organic layer, the resulting aqueous layer was extracted with EtOAc (15 mL X5). The combined organic layers were washed with saturated $\mathrm{NaHCO}_{3}(55 \mathrm{~mL})$, brine (15 mL), and dried over
anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solid dehydrating agent, the organic layer was concentrated under reduced pressure to give a crude product. Purification of the crude product by flash chromatography on silica gel, using EtOAc/n-Hex as the eluant, gave the titled product as a colorless oil (4.02 g, $14.7 \mathrm{mmol}, 92 \%$): colorless oil, $R_{f}=0.33 ; \mathrm{EtOAc} / \mathrm{n}-\mathrm{Hex}=1 / 2 ;[\alpha]_{\mathrm{D}}{ }^{25}-1.8\left(c: 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-$ NMR ($\left.400 \mathrm{MHz}, 25^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta\right): 1.16-1.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.30(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 1.40(\mathrm{t}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 1.55-1.75 (m, 3H, H-3, H-5 and H-6), 2.04-2.11 (m, 1H, H-2), 2.19-2.26 (m, 1H, $\mathrm{CH}_{2} \mathrm{CHO}$), 2.45 (br, 1H, $-\mathrm{CH}_{2} \mathrm{CHO}$), 3.94 (brs, $1 \mathrm{H}, \mathrm{H}-1$), 4.21 (brs, $1 \mathrm{H}, \mathrm{H}-4$), 4.99 (d, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H},-$ $\mathrm{OCH}_{2} \mathrm{Ph}$), $5.03\left(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 7.18-7.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{in} \mathrm{Ph}), 7.23-7.28(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2$ ' and H-3' in Ph), $9.56(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHO}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta\right): 28.6$ (t, C-5), 28.7 (t, C-6), 36.4 (d, C-2), 37.2 (t, C-3), 49.4 (t, - $\underline{\mathrm{CH}}_{2} \mathrm{CHO}$), 55.8 (d, C-4), 59.8 (d, C-1), 66.3 (t, $\mathrm{OCH}_{2} \mathrm{Ph}$), 127.5 (d, C-2 in Ph), 127.6 (d, C-4 in Ph), 128.1 (d, C-3 in Ph), 136.3 (s, C-1 in Ph), 155.2 (s, N-CO-O), 201.0 (d, $\left.-\mathrm{CH}_{2} \underline{\mathrm{CHO}}\right)$; EI-HRMS (m/z): [M] ${ }^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}{ }^{+}, 273.1365$; found, 273.1361 ($\Delta=1.5 \mathrm{ppm}$).

(-)-(1R,2S,4S)-7-benzyloxycarbonyl-7-azabicyclo[2.2.1]heptan-2-ylacetic

acid (9): To a solution of aldehyde $\mathbf{8}(171 \mathrm{mg}, 0.626 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in acetone$ $(1.3 \mathrm{~mL})$ in an ice bath, was slowly added Jones' reagent $(1.34 \mathrm{M}, 600 \mu \mathrm{~L}, 0.8$
 mmol, 1.3 eq. .). The reaction mixture was allowed to be stirred at the ice bath for 1 h . Upon completion of the reaction monitored by TLC analysis, IPA (1 mL) was added to quench the reaction, followed by addition of brine $(2.0 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. The resulting aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL X4). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solid dehydrating agent, the organic layer was concentrated under reduced pressure to give a crude product. Purification of the crude product by flash chromatography on silica gel, using EtOAc/n$\mathrm{Hex} / \mathrm{AcOH}$ as the eluant, gave the titled product as a colorless oil ($172 \mathrm{mg}, 0.594 \mathrm{mmol}, 95 \%$): $R_{f}=$ 0.23; EtOAc/n-Hex $=1 / 1 ;[\alpha]_{\mathrm{D}}{ }^{26}-5.9\left(c: 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta\right): 1.32-1.42$ (m, 2H, H-3 and H-5), $1.46(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 1.62-1.82(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ and H-6), 2.04-2.11 (m, $1 \mathrm{H}, \mathrm{H}-2), 2.09-2.24\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}_{2} \mathrm{COOH}\right), 2.40\left(\mathrm{br}, 1 \mathrm{H},-\mathrm{CH}_{2} \mathrm{COOH}\right), 4.12(\mathrm{brs}, 1 \mathrm{H}, \mathrm{H}-1), 4.30(\mathrm{brs}, 1 \mathrm{H}$, $\mathrm{H}-4), 5.09\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 7.24-7.35(\mathrm{~m}, 5 \mathrm{H}$ in Ph$), 8.60(\mathrm{brs}, 1 \mathrm{H},-\mathrm{COOH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}, 25$ ${ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta$): 28.8 (t, 2C, C-5 and C-6), 37.1 (t, C-3), 38.9 (d, C-2), 39.4 (t, $-\mathrm{CH}_{2} \mathrm{COOH}$), 56.1 (d, C-4), 60.0 (d, C-1), 66.8 (t, $\mathrm{OCH}_{2} \mathrm{Ph}$), 127.7 (d, C-2 in Ph), 127.8 (d, C-4 in Ph), 128.3 (d, C-3 in Ph), 136.4 (s,
$\mathrm{C}-1$ in Ph), 155.6 (s, N- $\underline{\mathrm{CO}}-\mathrm{O}$), 177.3 (s, $-\mathrm{CH}_{2} \underline{\mathrm{COOH}}$); EI-HRMS (m/z): [M] ${ }^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4}{ }^{+}$, 289.1314; found, $289.1305(\Delta=3.1 \mathrm{ppm})$.

HPLC condition: Chiralcel OD-H, 250 mm X $4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$; Mobile phase A: 0.5% TFA in an IPA/nHex solution ($\mathrm{v} / \mathrm{v}=1 / 10$); Mobile phase B: 0.5% TFA in pure $\mathrm{n}-\mathrm{Hex}$; isocratic, $70 \% \mathrm{~A}: 30 \% \mathrm{~B}$; flow rate 1.0 mL per min ; detection UV $215 \mathrm{~nm}, t_{\mathrm{R}}: 12.4 \mathrm{~min}$ for $(+)-\mathbf{9}, 14.6 \mathrm{~min}$ for ($(-)-\mathbf{9}$.

	Retention Time	Area	\% Area	Height
1	12.362	8556779	50.53	342164
2	14.605	8378835	49.47	282511

Ethyl 4-[(1'R,2'S,4'S)-7-benzyloxycarbonyl-7-azabicyclo[2.2.1]heptan-2-yl]- Cbz
5-0xo-pentanoate(10): To a solution of aldehyde $\mathbf{9}(3.00 \mathrm{~g}, 11.0 \mathrm{mmol}, 1.0$ eq.) in $\mathrm{CH}_{3} \mathrm{CN}(7.3 \mathrm{~mL})$ in an ice bath, was slowly added
 diethyltrimethylsilylamine ($\mathrm{TMSNEt}_{2}, 2.1 \mathrm{~mL}, 11.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and ethyl acrylate ($1.8 \mathrm{~mL}, 16.5$ mmol, 1.5 eq.). The reaction mixture was allowed to be refluxed for 13 h . Upon completion of the reaction monitored by TLC analysis, the reaction mixture was concentrated under reduced pressure to yield a residue. Purification of the crude residue product by flash chromatography on silica gel, using $\mathrm{EtOAc} / \mathrm{n}-\mathrm{Hex}$ as the eluant, gave the titled product glutarate semialdehyde $\mathbf{1 0}$ as a colorless oil (3.32 g ,
$8.89 \mathrm{mmol}, 81 \%): R_{f}=0.23 ; \mathrm{EtOAc} / \mathrm{n}-\mathrm{Hex}=1 / 3 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, 25^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta\right): 1.13(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.26-1.42(\mathrm{~m}, 2.5 \mathrm{H}), 1.42-1.57(\mathrm{~m}, 1.5 \mathrm{H}), 1.58-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.78-1.90(\mathrm{~m}, 2 \mathrm{H}), 2.00-2.24(\mathrm{~m}$, $3 \mathrm{H}), 4.00(\mathrm{dd}, J=7.2,14.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.03-4.10(\mathrm{~m}, 0.5 \mathrm{H}), 4.21(\mathrm{br}, 1.5 \mathrm{H}), 4.94-5.04(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.20$ $(\mathrm{m}, 1 \mathrm{H}), 7.21-7.27(\mathrm{~m}, 4 \mathrm{H}), 9.44(\mathrm{~s}, 0.5 \mathrm{H}), 9.54(\mathrm{brs}, 0.5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta\right)$: $13.8(\mathrm{q}, 2 \mathrm{C}), 21.4(\mathrm{t}), 22.2(\mathrm{t}), 28.6-29.3(\mathrm{t}, 4 \mathrm{C}), 30.9(\mathrm{t}), 31.0(\mathrm{t}), 34.9(\mathrm{t}, 2 \mathrm{C}), 42.8(\mathrm{~d}, 2 \mathrm{C}), 54.4(\mathrm{~d})$, 54.8 (d), 55.7 (d), $56.0(\mathrm{~d}), 57.7$ (d), 58.1 (d), 60.11 (t), $60.14(\mathrm{t}), 66.36(\mathrm{t}), 60.39(\mathrm{t}), 127.52(\mathrm{~d}, 2 \mathrm{C})$, 127.55 (d, 2C), 127.65 (d), 127.66 (d), 128.09 (d, 2C), 128.11 (d, 2C), 136.27 (s), 136.28 ($s), 150$ ($\mathrm{s}, 2 \mathrm{C}$), $172.26(\mathrm{~s}), 172.31(\mathrm{~s}), 203.0(\mathrm{~d}), 203.4(\mathrm{~d}) ; \operatorname{ESI}-\mathrm{HRMS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{5} \cdot \mathrm{H}\right]^{+}$, 374.1967; found, $374.1969(\Delta=0.5 \mathrm{ppm})$.
(-)-5-[(1'R,2'S,4'S)-7-benzyloxycarbonyl-7-azabicyclo[2.2.1]heptan-2-yl]-3,4-dihydropyrid-2-one (11): To a solution of glutarate semialdehyde 10 (350 $\mathrm{mg}, 0.937 \mathrm{mmol}, 1.0$ eq.) in benzene $(1.0 \mathrm{~mL})$ in an ice bath, was slowly added
 ammonium acetate ($87 \mathrm{mg}, 1.13 \mathrm{mmol}, 1.2$ eq.) and acetic acid ($80 \mu \mathrm{~L}, 1.40 \mathrm{mmol}, 1.5 \mathrm{eq}$). The reaction mixture was allowed to be refluxed for 2.5 h . Upon completion of the reaction monitored by TLC analysis, a NaHCO_{3} solution $(5 \%, 4 \mathrm{~mL})$ was added to quench the reaction at the ice bath, followed by addition of brine $(5 \mathrm{~mL})$ and ether $(5 \mathrm{~mL})$. The resulting aqueous solution was extracted with ether (3 mL X5). The combined organic layers were washed with brine (5 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated under reduced pressure to give a crude product. Purification of the crude product by flash chromatography on silica gel, using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluant, gave the titled product as a white solid ($287 \mathrm{mg}, 0.879 \mathrm{mmol}, 93 \%$): mp $127-128^{\circ} \mathrm{C}, R_{f}=0.33 ; \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=$ $1 / 10 ;[\alpha]_{\mathrm{D}}{ }^{25}-1.3^{\circ}\left(c: 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta\right): 1.36-1.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5$ and H6), $1.58-1.66(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 1.72$ (brs, $2 \mathrm{H}, \mathrm{H}-5$ and $\mathrm{H}-6$), 2.18 (brs, $2 \mathrm{H}, \mathrm{H}-4$ in pyridone), 2.27 (t, $J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2), 2.28-2.38$ (m, 2H, H-3 in pyridone), 4.04-4.20 (m, 1H, H-1), 4.32 (brs, 1H, H-4), 4.98$5.08\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 5.78$ (brs, $1 \mathrm{H}, \mathrm{H}-6$ in pyridone), $7.22-7.34(\mathrm{~m}, 5 \mathrm{H},-\mathrm{Ph}), 7.93(\mathrm{~s}, 1 \mathrm{H},-\mathrm{NH}) ;{ }^{13} \mathrm{C}-$ NMR ($100 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta$): 22.5 (t, C-4 in pyridone), 28.9 (t, 2C, C-5 and C-6), 30.1 ($\mathrm{t}, \mathrm{C}-3 \mathrm{in}$ pyridone), 35.9 (t, C-3), 46.2 (d, C-2), 55.6 (d, C-4), 59.5 (d, C-1), $66.5\left(t, \mathrm{OCH}_{2} \mathrm{Ph}\right), 119.4$ (d, C-6 in pyridone), 119.7 (s, C-5 in pyridone), 127.8 (d, C-2 in Ph), 127.9 (d, C-4 in Ph), 128.3 (d, C-3 in Ph), 136.5 ($\mathrm{s}, \mathrm{C}-1$ in Ph), 154.6 ($\mathrm{s}, \mathrm{N}-\mathrm{CO}-\mathrm{O}$), 171.1 ($\mathrm{s}, \mathrm{C}-2$ in pyridone); EI-HRMS (m/z): [M] ${ }^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}, 326.1630$; found, 326.1631 ($\Delta=0.3 \mathrm{ppm}$).

HPLC condition: Chiralcel OD-H, 250 mm X $4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$; Mobile phase A: IPA : n -Hex $=1: 4(\mathrm{v} / \mathrm{v})$; Mobile phase B: pure n-Hex; isocratic, $70 \% \mathrm{~A}: 30 \% \mathrm{~B}$; flow rate 1.0 mL per min; detection UV 258 nm , $t_{\mathrm{R}}: 23.5 \mathrm{~min}$ for $(+) \mathbf{- 1 1}, 27.4 \mathrm{~min}$ for $(-)-\mathbf{1 1}$.

	Retention Time	Area	\% Area	Height
1	23.526	18534751	50.10	280066
2	27.399	18460616	49.90	235872

(+)-5-[(1'R,2'S,4'S)-7-benzyloxycarbonyl-7-azabicyclo[2.2.1]heptan-2-yl]-2pyridine (12): To a solution of dihydropyridone $11(245 \mathrm{mg}, 0.751 \mathrm{mmol}, 1.0$ eq.) in benzene (3.7 mL), was added $\mathrm{MnO}_{2}(65 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.0 \mathrm{eq}$.). The
 reaction mixture was allowed to be refluxed for 13 h . Additional MnO_{2} was added in 65 mg portions every hour until total amount reachs to 9.0 equivalent. Upon completion of the reaction monitored by TLC analysis, the reaction mixture was filtered with a celite pad to yield a fitrate. The filtrate was concentrated under reduced pressure to give a crude residue. Purification of the crude product by flash chromatography on silica gel, using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluant to give the titled product as a yellow solid ($220 \mathrm{mg}, 0.678 \mathrm{mmol}, 90 \%$): $\mathrm{mp} 78-80^{\circ} \mathrm{C}, R_{f}=0.24 ; \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1 / 10 ;[\alpha]_{\mathrm{D}}{ }^{23}+21.9(c: 1.0$, CHCl_{3}); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, 25^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta\right): 1.40-1.56(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5$ and $\mathrm{H}-6), 1.66-1.80(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3$,

H-5 and H-6), 1.88 (dd, $J=9.2$ and $12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ endo), 2.61 (dd, $J=4.4$ and $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 4.14 (brs, $1 \mathrm{H}, \mathrm{H}-1$), 4.39 (brs, $1 \mathrm{H}, \mathrm{H}-4$), $5.06\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 6.46(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ in pyridone), 7.18 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-6$ in pyridone), 7.29 (brs, $5 \mathrm{H}-\mathrm{Ph}$), $7.40(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ in pyridone), 13.3 (s, 1H,NH); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta\right): 28.8$ (t, C-5), 30.8 (t, C-6), 39.3 (t, C-3), 44.4 (d, C-2), 56.0 (d, C-4), 62.0 (d, C-1), 66.8 (t, $\mathrm{OCH}_{2} \mathrm{Ph}$), 120.1 (d, C-3 in pyridone), 124.0 ($\mathrm{s}, \mathrm{C}-5$ in pyridone), 127.8 (d, C-2 in Ph), 127.9 (d, C-4 in Ph), 128.4 (d, C-3 in Ph), 131.5 (d, C-6 in pyridone), 136.4 ($\mathrm{s}, \mathrm{C}-1$ in Ph), 141.7 (d, C-4 in pyridone), 155.3 ($\mathrm{s}, \mathrm{N}-\mathrm{CO}-\mathrm{O}$), 164.6 ($\mathrm{s}, \mathrm{C}-2$ in pyridone); EI-HRMS (m/z): $[\mathrm{M}]^{+}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}, 324.1474$; found, $324.1480(\Delta=1.9 \mathrm{ppm})$.

HPLC condition: Chiralcel OD-H, 250 mm X $4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$; Mobile phase A: IPA : $\mathrm{n}-\mathrm{Hex}=1: 4(\mathrm{v} / \mathrm{v})$; Mobile phase B: pure n-Hex; isocratic, 80% A : 20% B; flow rate 1.0 mL per min; detection UV 310 nm , $t_{\mathrm{R}}: 21.7 \mathrm{~min}$ for $(-) \mathbf{- 1 2}, 29.7 \mathrm{~min}$ for $(+) \mathbf{- 1 2}$.

	Retention Time	Area	\% Area	Height
1	21.675	5894555	51.26	71377
2	29.742	5603737	48.74	47797

	Retention Time	Area	\% Area	Height
1	22.301	123305	1.48	1727
2	29.522	8210735	98.52	66521

5-[(1'R,2'S,4'S)-7-formyl-7-azabicyclo[2.2.1]heptan-2-yl]-2-chloropyridine (13): To a mixture of pyridone $12(190 \mathrm{mg}, 0.586 \mathrm{mmol}, 1.0$ eq.) and DMF ($300 \mu \mathrm{~L}, 3.87 \mathrm{mmol}, 6.6$ eq.) in an ice bath, was slowly added $\mathrm{POCl}_{3}(300 \mu \mathrm{~L}$,
 $3.22 \mathrm{mmol}, 5.5 \mathrm{eq}$. .) The reaction mixture was allowed to be stirred at $80^{\circ} \mathrm{C}$ for 8.5 h . Upon completion of the reaction monitored by TLC analysis, chilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added. The reaction mixture was transferred to a chilled biphasic solution of $\mathrm{NaOH}(1 \mathrm{~N}, 5 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The pH value was controlled in the range of $9 \sim 10$. The aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 mL X). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated under reduced pressure to give a crude product. Purification of the crude product by flash chromatography on silica gel, using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{3} \mathrm{~N}$ as the eluant to give the titled product as a yellow oil ($101 \mathrm{mg}, 0.427 \mathrm{mmol}$, $73 \%): R_{f}=0.43 ; \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1 / 20 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta\right):{ }^{2} 1.55-1.90(\mathrm{~m}, 10 \mathrm{H})$, $2.06(\mathrm{dd}, J=8.8$ and $12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dd}, J=9.2$ and $12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{t}, J$ $=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{t}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=2.4$ and $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J$ $=2.8$ and $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (100 MHz, $\left.25{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta\right): 28.2$ (t), 29.1 (t), 29.8 (t , 30.7 (t), 38.7 (t$), 41.2$ (t$), 44.1$ (d), 44.8 (d), 51.6 (d), 55.3 (d), 56.6 (d), 61.8 (d), 124.2 (d), 124.4 (d), 136.4 (d), 136.8 (d), 138.5 (s), 139.0 (s), 148.4 (d), 148.7 (d), 149.4 (s), 149.8 (s), 157.2 (d), 157.6 (d). EI-HRMS (m/z): [M] calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}^{+}$, 236.0716; found, $236.0712(\Delta=1.7 \mathrm{ppm})$.

(-)-5-[(1'R,2'S,4'S)-7-azabicyclo[2.2.1]heptan-2-yl]-2-chloropyridine

(epibatidine, 1): To a solution of formamide $13(107 \mathrm{mg}, 0.452 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in$ $\mathrm{MeOH}(0.4 \mathrm{~mL})$ in an ice bath, was slowly added HCl in methanol solution $(5 \%$,
 0.6 mL). The reaction mixture was allowed to be stirred at at $60^{\circ} \mathrm{C}$ for 2 h . Upon completion of the reaction monitored by TLC analysis, chilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added. The reaction mixture was transferred to a chilled biphasic solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \%, 8 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The pH value was controlled in the range of $9 \sim 10$. The aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL X). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated under reduced pressure to give a crude product. Purification of the crude product by flash chromatography on silica gel,

[^1]using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{NEt}_{3}$ as the eluant to give the titled product as a yellow oil $(87 \mathrm{mg}, 0.417 \mathrm{mmol}$, 92\%): $R_{f}=0.15 ; \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{NEt}_{3}=1 / 20 / 0.2 ;[\alpha]_{\mathrm{D}}{ }^{25}-6.8\left(c: 1.0, \mathrm{CHCl}_{3}\right),\left[\right.$ lit. ${ }^{3}[\alpha]_{\mathrm{D}}{ }^{25}-6.5(c: 1.0$, CHCl_{3})]; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta\right): 1.42-1.55(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5 \mathrm{X} 2$ and H-6 X2), $1.69(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}$), 1.83 (dd, $J=8.8$ and $12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ endo), 2.69 (dd, $J=4.4$ and $8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 3.48 (brs, $1 \mathrm{H}, \mathrm{H}-1), 3.72(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ in pyridine), $7.70(\mathrm{dd}, J=2.4$ and $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ in pyridine), $8.20\left(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right.$ in pyridine); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}\right.$, $\mathrm{CDCl}_{3}, \delta$): 30.0 (t, C-5), 31.2 (t, C-6), 40.2 (t, C-3), 44.3 (d, C-2), 56.0 (d, C-4), 62.6 (d, C-1), 123.7 (d, C-3 in pyridine), 137.6 (d, C-4 in pyridine), 141.0 ($\mathrm{s}, \mathrm{C}-5$ in pyridine), 148.6 (d, C-6 in pyridine), 148.7 ($\mathrm{s}, \mathrm{C}-2$ in pyridine). EI-HRMS (m/z): [M] ${ }^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClN}_{2}{ }^{+}$, 208.0767; found, 208.0763 ($\Delta=1.9$ ppm).

HPLC condition: Chiralcel OD-H, 250 mm X $4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$; Mobile phase A: $0.1 \% \mathrm{Et}_{2} \mathrm{NH}$ in an IPA/nHex solution (v/v=1/15); Mobile phase B: pure n -Hex; isocratic, $50 \% \mathrm{~A}: 50 \% \mathrm{~B}$; flow rate 1.0 mL per \min; detection UV $274 \mathrm{~nm}, t_{\mathrm{R}}: 18.5 \mathrm{~min}$ for $(-) \mathbf{- 1}, 21.6 \mathrm{~min}$ for $(+) \mathbf{- 1}$.

	Retention Time	Area	\% Area	Height
1	18.490	12450854	50.11	340284
2	21.562	12396237	49.89	316282

[^2]
(+)-5-[(1'R,2'S,4'S)-7-methyl-7-azabicyclo[2.2.1]heptan-2-yl]-2-

chloropyridine: (N-methyl-epibatidine, 14): To a THF solution (2 mL) of $\mathrm{H}_{3} \mathrm{C}$ LiAlH_{4} ($72 \mathrm{mg}, 1.90 \mathrm{mmol}, 5.0$ eq.) and $\mathrm{Et}_{3} \mathrm{~N} \cdot \mathrm{HCl}(262 \mathrm{mg}, 1.90 \mathrm{mmol}, 5.0$ eq.) in an ice bath, was slowly added a solution of formamide $13(90 \mathrm{mg}, 0.380$
 mmol, 1.0 eq.) in THF (2 mL). The reaction mixture was allowed to be stirred at room temperature overnight. Upon completion of the reaction monitored by TLC analysis, chilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added, followed by slow addition of a NaOH solution $(10 \%, 1.5 \mathrm{~mL})$. The reaction mixture was allowed to be stirred for another 10 min until white precipitate has been settled down. After separation of the precipitate, the fitrate was concentrated concentrated under reduced pressure to give a crude product. Purification of the crude product by flash chromatography on silica gel, using $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{NEt}_{3}$ as the eluant to give the titled product as a yellow solid ($64 \mathrm{mg}, 0.287 \mathrm{mmol}, 76 \%$) : $\mathrm{mp} 76-78{ }^{\circ} \mathrm{C}, R_{f}=$ $0.28 ; \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}=1 / 20 ;[\alpha]_{\mathrm{D}}{ }^{25}+18.5\left(c: 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, \delta\right): 1.34-$ 1.44 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-5$ and H-6), 1.58-1.66 (m, 1H, H-3), 1.80 (dd, $J=9.6$ and $11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ endo), 1.841.94 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-5$ and H-6), $2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) 2.61(\mathrm{dd}, J=4.8$ and $9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $3.09(\mathrm{~d}, J=4.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.29(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ in pyridine), 7.85 (dd, $J=2.0$ and $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ in pyridine), 8.25 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ in pyridine); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right.$, $\mathrm{CDCl}_{3}, \delta$): 25.4 (t, C-5), 26.3 (t, C-6), 34.5 ($\mathrm{q}, \mathrm{NCH}_{3}$), 41.5 (t, C-3), 45.3 (d, C-2), 61.1 (d, C-4), 67.4 (d, $\mathrm{C}-1$), 123.6 ($\mathrm{d}, \mathrm{C}-3$ in pyridine), 138.0 ($\mathrm{d}, \mathrm{C}-4$ in pyridine), 141.7 ($\mathrm{s}, \mathrm{C}-5$ in pyridine), 148.6 ($\mathrm{s}, \mathrm{C}-2 \mathrm{in}$ pyridine), 148.8 (d, C-6 in pyridine); EI-HRMS (m/z): [M] calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClN}_{2}{ }^{+}$, 222.0924; found, 222.0927 ($\Delta=1.4 \mathrm{ppm}$).

HPLC condition: Chiralcel OD-H, 250 mm X $4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$; Mobile phase A: $0.1 \% \mathrm{Et}_{2} \mathrm{NH}$ in an IPA/nHex solution ($\mathrm{v} / \mathrm{v}=1 / 15$); Mobile phase B: pure n -Hex; isocratic, $50 \% \mathrm{~A}: 50 \% \mathrm{~B}$; flow rate 1.0 mL per min ; detection UV $273 \mathrm{~nm}, t_{\mathrm{R}}: 6.6 \mathbf{m i n}$ for $(-) \mathbf{- 1 4 ,} 7.9 \mathrm{~min}$ for $(+) \mathbf{- 1 4}$.

	Retention Time	Area	\% Area	Height
1	6.647	5701753	50.89	687950
2	7.944	5502199	49.11	567187

Table 1. Crystal data and structure refinement for $\mathbf{4 a}$.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=72.34^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})]$
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole
corn
C25 H26 N2 O5
434.48

150(2) K
$1.54178 \AA$
Orthorhombic
P 212121
$a=8.2328(2) \AA \quad \alpha=90^{\circ}$.
$b=12.2627(2) \AA \quad \beta=90^{\circ}$.
$\mathrm{c}=21.8139(4) \AA \quad \gamma=90^{\circ}$.
$2202.25(8) \AA^{3}$
4
$1.310 \mathrm{Mg} / \mathrm{m}^{3}$
$0.750 \mathrm{~mm}^{-1}$
920
$0.42 \times 0.40 \times 0.32 \mathrm{~mm}^{3}$
4.05 to 72.34°.
$-9<=\mathrm{h}<=10,-9<=\mathrm{k}<=14,-26<=\mathrm{l}<=19$
8398
$4239[\mathrm{R}(\mathrm{int})=0.0196]$
98.9 \%

Semi-empirical from equivalents
1.00000 and 0.96097

Full-matrix least-squares on F^{2}
4239 / 0 / 290
1.013
$\mathrm{R} 1=0.0315, \mathrm{wR} 2=0.0839$
$R 1=0.0338, w R 2=0.0855$
0.07(15)
0.0038(3)
0.180 and $-0.142 \mathrm{e} . \AA^{-3}$

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{4 a} . \mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{O}(1)$	$2288(1)$	$3644(1)$	$1364(1)$	$26(1)$
$\mathrm{O}(2)$	$2368(2)$	$5290(1)$	$896(1)$	$35(1)$
$\mathrm{O}(3)$	$-1037(2)$	$4695(1)$	$1840(1)$	$34(1)$
$\mathrm{O}(4)$	$-2567(1)$	$1506(1)$	$1442(1)$	$34(1)$
$\mathrm{O}(5)$	$-1535(1)$	$1229(1)$	$2374(1)$	$30(1)$
$\mathrm{N}(1)$	$814(2)$	$3901(1)$	$517(1)$	$26(1)$
$\mathrm{N}(2)$	$-1493(2)$	$2929(1)$	$2029(1)$	$22(1)$
$\mathrm{C}(1)$	$3336(2)$	$3584(1)$	$2921(1)$	$28(1)$
$\mathrm{C}(2)$	$3513(2)$	$2840(2)$	$3397(1)$	$36(1)$
$\mathrm{C}(3)$	$3954(2)$	$1777(2)$	$3272(1)$	$38(1)$
$\mathrm{C}(4)$	$4207(2)$	$1449(1)$	$2671(1)$	$35(1)$
$\mathrm{C}(5)$	$4028(2)$	$2185(1)$	$2197(1)$	$30(1)$
$\mathrm{C}(6)$	$3593(2)$	$3263(1)$	$2318(1)$	$24(1)$
$\mathrm{C}(7)$	$3430(2)$	$4074(1)$	$1807(1)$	$28(1)$
$\mathrm{C}(8)$	$1842(2)$	$4368(1)$	$924(1)$	$25(1)$
$\mathrm{C}(9)$	$-308(2)$	$3000(1)$	$660(1)$	$25(1)$
$\mathrm{C}(10)$	$-819(2)$	$2646(2)$	$13(1)$	$35(1)$
$\mathrm{C}(11)$	$-787(2)$	$3734(2)$	$-351(1)$	$42(1)$
$\mathrm{C}(12)$	$-328(2)$	$4563(2)$	$145(1)$	$33(1)$
$\mathrm{C}(13)$	$-1773(2)$	$4705(1)$	$587(1)$	$35(1)$
$\mathrm{C}(14)$	$-1767(2)$	$3626(1)$	$956(1)$	$25(1)$
$\mathrm{C}(15)$	$-1430(2)$	$3820(1)$	$1632(1)$	$24(1)$
$\mathrm{C}(16)$	$-1930(2)$	$1860(1)$	$1896(1)$	$25(1)$
$\mathrm{C}(17)$	$-576(2)$	$1844(1)$	$2814(1)$	$28(1)$
$\mathrm{C}(18)$	$-913(2)$	$3038(1)$	$2662(1)$	$21(1)$
$\mathrm{C}(19)$	$-2158(2)$	$3584(1)$	$3084(1)$	$25(1)$
$\mathrm{C}(20)$	$-1453(2)$	$3702(1)$	$3719(1)$	$23(1)$
$\mathrm{C}(21)$	$-1849(2)$	$2978(1)$	$4182(1)$	$36(1)$
$\mathrm{C}(22)$	$-1079(3)$	$3033(2)$	$4746(1)$	$45(1)$
$\mathrm{C}(23)$	$100(2)$	$3816(2)$	$4854(1)$	$40(1)$
$\mathrm{C}(24)$	$483(2)$	$4552(1)$	$4400(1)$	$36(1)$
$\mathrm{C}(25)$	$-289(2)$	$4497(1)$	$3834(1)$	$29(1)$

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{4 a}$.

$\mathrm{O}(1)-\mathrm{C}(8)$	1.3570(17)
$\mathrm{O}(1)-\mathrm{C}(7)$	1.4491(17)
$\mathrm{O}(2)-\mathrm{C}(8)$	1.2122(18)
$\mathrm{O}(3)-\mathrm{C}(15)$	1.2094(18)
$\mathrm{O}(4)-\mathrm{C}(16)$	1.2020(18)
$\mathrm{O}(5)-\mathrm{C}(16)$	$1.3390(18)$
$\mathrm{O}(5)-\mathrm{C}(17)$	$1.4548(18)$
$\mathrm{N}(1)-\mathrm{C}(8)$	$1.356(2)$
$\mathrm{N}(1)-\mathrm{C}(9)$	$1.4725(19)$
$\mathrm{N}(1)-\mathrm{C}(12)$	$1.4829(19)$
$\mathrm{N}(2)-\mathrm{C}(16)$	$1.3903(18)$
$\mathrm{N}(2)-\mathrm{C}(15)$	$1.3959(18)$
$\mathrm{N}(2)-\mathrm{C}(18)$	$1.4677(17)$
$\mathrm{C}(1)-\mathrm{C}(2)$	1.389(2)
$\mathrm{C}(1)-\mathrm{C}(6)$	1.391(2)
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.9500
$\mathrm{C}(2)-\mathrm{C}(3)$	1.381(3)
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9500
$\mathrm{C}(3)-\mathrm{C}(4)$	1.387(2)
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9500
$\mathrm{C}(4)-\mathrm{C}(5)$	1.379(2)
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9500
$\mathrm{C}(5)-\mathrm{C}(6)$	1.394(2)
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9500
$\mathrm{C}(6)-\mathrm{C}(7)$	1.499(2)
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9900
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	0.9900
$\mathrm{C}(9)-\mathrm{C}(10)$	1.535(2)
$\mathrm{C}(9)-\mathrm{C}(14)$	$1.5650(19)$
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	1.0000
$\mathrm{C}(10)-\mathrm{C}(11)$	1.552(3)
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.9900
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	0.9900
$\mathrm{C}(11)-\mathrm{C}(12)$	1.533(2)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9900
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	0.9900
$\mathrm{C}(12)-\mathrm{C}(13)$	1.541(2)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	1.0000
$\mathrm{C}(13)-\mathrm{C}(14)$	1.549(2)
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.9900
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	0.9900
$\mathrm{C}(14)-\mathrm{C}(15)$	1.520(2)
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	1.0000
$\mathrm{C}(17)-\mathrm{C}(18)$	1.526(2)
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9900
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	0.9900

$\mathrm{C}(18)-\mathrm{C}(19)$	1.5310 (19)
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	1.0000
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.5089(19)$
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	0.9900
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	0.9900
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.384(2)$
$\mathrm{C}(20)-\mathrm{C}(25)$	1.390 (2)
$\mathrm{C}(21)-\mathrm{C}(22)$	1.386(2)
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9500
$\mathrm{C}(22)-\mathrm{C}(23)$	$1.385(3)$
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9500
$\mathrm{C}(23)-\mathrm{C}(24)$	$1.376(3)$
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	0.9500
$\mathrm{C}(24)$-C(25)	1.390(2)
$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	0.9500
$\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	0.9500
$\mathrm{C}(8)-\mathrm{O}(1)-\mathrm{C}(7)$	114.11(11)
$\mathrm{C}(16)-\mathrm{O}(5)-\mathrm{C}(17)$	110.24(11)
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(9)$	124.73(12)
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(12)$	121.51(13)
$\mathrm{C}(9)-\mathrm{N}(1)-\mathrm{C}(12)$	97.42(12)
$\mathrm{C}(16)-\mathrm{N}(2)-\mathrm{C}(15)$	128.16(12)
$\mathrm{C}(16)-\mathrm{N}(2)-\mathrm{C}(18)$	111.53(11)
$\mathrm{C}(15)-\mathrm{N}(2)-\mathrm{C}(18)$	120.08(11)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	120.38(15)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	119.8
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	119.8
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	119.98(16)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	120.0
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	120.0
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	120.02(16)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	120.0
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	120.0
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	120.12(16)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	119.9
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	119.9
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	120.45(15)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.8
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.8
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	119.06(14)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	120.10(14)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	120.83(14)
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	108.18(12)
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	110.1
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	110.1
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	110.1
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	110.1
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	108.4

$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{O}(1)$	123.41(14)
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{N}(1)$	125.70(14)
$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{N}(1)$	110.81(13)
$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	100.91(12)
$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(14)$	101.60(11)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)$	107.89(12)
$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	114.9
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	114.9
$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	114.9
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	102.87(13)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	111.2
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	111.2
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	111.2
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	111.2
$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.1
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	102.30(12)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	111.3
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	111.3
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	111.3
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	111.3
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.2
$\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{C}(11)$	100.29(13)
$\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{C}(13)$	102.10(11)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	109.03(15)
$\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	114.6
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	114.6
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	114.6
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	103.06(13)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	111.2
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	111.2
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	111.2
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	111.2
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.1
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	111.78(13)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(9)$	109.71(12)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	101.94(12)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	111.0
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	111.0
$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	111.0
$\mathrm{O}(3)-\mathrm{C}(15)-\mathrm{N}(2)$	118.08(13)
$\mathrm{O}(3)-\mathrm{C}(15)-\mathrm{C}(14)$	123.58(13)
$\mathrm{N}(2)-\mathrm{C}(15)-\mathrm{C}(14)$	118.24(12)
$\mathrm{O}(4)-\mathrm{C}(16)-\mathrm{O}(5)$	122.60(14)
$\mathrm{O}(4)-\mathrm{C}(16)-\mathrm{N}(2)$	128.76(14)
$\mathrm{O}(5)-\mathrm{C}(16)-\mathrm{N}(2)$	108.64(12)
$\mathrm{O}(5)-\mathrm{C}(17)-\mathrm{C}(18)$	104.83(11)
$\mathrm{O}(5)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	110.8
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	110.8
$\mathrm{O}(5)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	110.8

$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	110.8
$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	108.9
$\mathrm{~N}(2)-\mathrm{C}(18)-\mathrm{C}(17)$	$100.15(10)$
$\mathrm{N}(2)-\mathrm{C}(18)-\mathrm{C}(19)$	$112.71(11)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$114.25(12)$
$\mathrm{N}(2)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.8
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.8
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.8
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	$109.56(11)$
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.8
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.8
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.8
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.8
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	108.2
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(25)$	$118.68(14)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	$121.18(14)$
$\mathrm{C}(25)-\mathrm{C}(20)-\mathrm{C}(19)$	$119.95(13)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$120.62(16)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	119.7
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	119.7
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	$120.35(16)$
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	119.8
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	119.8
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	$119.48(15)$
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	120.3
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	120.3
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$120.18(16)$
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	119.9
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	119.9
$\mathrm{C}(20)-\mathrm{C}(25)-\mathrm{C}(24)$	$120.66(15)$
$\mathrm{C}(20)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	119.7
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{H}(25 \mathrm{~A})$	119.7

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{4 a}$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{O}(1)$	27(1)	24(1)	27(1)	0(1)	-7(1)	-2(1)
$\mathrm{O}(2)$	41(1)	30(1)	35(1)	7(1)	-1(1)	-8(1)
$\mathrm{O}(3)$	53(1)	22(1)	26(1)	-1(1)	2(1)	-1(1)
$\mathrm{O}(4)$	34(1)	34(1)	33(1)	-11(1)	-4(1)	-5(1)
$\mathrm{O}(5)$	37(1)	21(1)	31(1)	0(1)	1(1)	-2(1)
N(1)	26(1)	31(1)	22(1)	1(1)	-1(1)	1(1)
N(2)	23(1)	22(1)	20(1)	-3(1)	0(1)	-1(1)
C(1)	18(1)	34(1)	32(1)	-6(1)	-2(1)	4(1)
C(2)	28(1)	53(1)	26(1)	1(1)	-1(1)	$0(1)$
C(3)	30(1)	44(1)	41(1)	16(1)	-6(1)	-5(1)
C(4)	30(1)	28(1)	47(1)	1(1)	-10(1)	2(1)
C(5)	24(1)	32(1)	33(1)	-5(1)	-2(1)	3(1)
C(6)	15(1)	30(1)	27(1)	-2(1)	-3(1)	$0(1)$
C(7)	27(1)	28(1)	29(1)	-1(1)	-7(1)	-5(1)
C(8)	24(1)	28(1)	23(1)	2(1)	3(1)	3(1)
C(9)	24(1)	30(1)	21(1)	-6(1)	-1(1)	$0(1)$
C(10)	28(1)	52(1)	25(1)	-15(1)	$0(1)$	-1(1)
C(11)	38(1)	70(1)	19(1)	-2(1)	-3(1)	4(1)
C(12)	34(1)	45(1)	21(1)	9(1)	-1(1)	6(1)
C(13)	36(1)	43(1)	25(1)	7(1)	-2(1)	14(1)
C(14)	23(1)	33(1)	20(1)	$0(1)$	-1(1)	6(1)
C(15)	24(1)	25(1)	22(1)	0 (1)	2(1)	4(1)
C(16)	20(1)	26(1)	29(1)	-4(1)	4(1)	-3(1)
C(17)	32(1)	27(1)	26(1)	0 (1)	-4(1)	2(1)
C(18)	19(1)	23(1)	19(1)	-1(1)	-1(1)	-2(1)
C(19)	20(1)	31(1)	24(1)	-2(1)	$0(1)$	1(1)
C(20)	23(1)	25(1)	21(1)	-4(1)	3(1)	2(1)
C(21)	49(1)	32(1)	25(1)	-2(1)	4(1)	-10(1)
C(22)	74(1)	36(1)	24(1)	3(1)	-2(1)	-1(1)
C(23)	48(1)	47(1)	26(1)	-10(1)	-10(1)	17(1)
C(24)	30(1)	42(1)	37(1)	-17(1)	-1(1)	-1(1)
C(25)	30(1)	28(1)	28(1)	-4(1)	5(1)	-3(1)

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{4 a}$.

	x	y	z	U(eq)
H(1A)	3037	4316	3009	34
H(2A)	3331	3063	3808	43
H(3A)	4085	1270	3597	46
H(4A)	4505	717	2585	42
H(5A)	4202	1956	1786	35
H(7A)	3033	4779	1970	34
H(7B)	4499	4198	1611	34
H(9A)	164	2408	919	30
H(10A)	-1921	2323	14	42
H(10B)	-44	2112	-161	42
H(11A)	35	3713	-682	51
H(11B)	-1864	3899	-530	51
H(12A)	137	5261	-15	40
H(13A)	-2803	4797	359	42
H(13B)	-1611	5341	859	42
H(14A)	-2807	3218	897	30
H(17A)	594	1676	2769	34
H(17B)	-916	1673	3239	34
H(18A)	126	3460	2669	25
H(19A)	-2448	4311	2919	30
H(19B)	-3158	3137	3101	30
H(21A)	-2656	2438	4112	43
H(22A)	-1361	2531	5060	54
H(23A)	640	3844	5239	48
H(24A)	1276	5099	4474	44
H(25A)	-18	5008	3523	34

$3{ }^{1}{ }^{1}$ NMR

$3{ }^{13}$ C NMR

4a ${ }^{1} \mathbf{H}$ NMR

4b ${ }^{\mathbf{1}} \mathrm{H}$ NMR

4b ${ }^{13}$ C NMR

$5^{1} \mathrm{H}$ NMR

$5{ }^{13} \mathrm{C}$ NMR

$6{ }^{13} \mathrm{C}$ NMR

$7{ }^{\mathbf{1}} \mathrm{H}$ NMR

$7{ }^{13}$ C NMR

$8{ }^{1}{ }^{1}$ NMR

$8{ }^{13}$ C NMR

$9^{1}{ }^{1}$ NMR

$9{ }^{13} \mathrm{C}$ NMR

$10{ }^{13}$ C NMR

$11{ }^{1} \mathrm{H}$ NMR

$880^{\circ} \square \square$
$\angle I E \cdot \square$
$980 \cdot \mathrm{~s} \square$
$990 \cdot \mathrm{~s} \longrightarrow$
$282 \cdot \mathrm{~s}$

とらでし
$8 \angle 2^{\circ} \angle$
$\angle 82^{\circ}$
662°
$682^{\circ} 2$
I2
－

$11{ }^{13}$ C NMR

$99 S^{\circ} \mathrm{SS}$
$\angle 6 b^{\circ} 6 S$
8 ss.99
$189^{\circ} 9 \angle \square$
$000 . \angle L$
$6 \tau \varepsilon^{\circ} \angle L$

$12{ }^{1} \mathrm{H}$ NMR

$681 \cdot ヵ-$
190.s-

$12{ }^{13}$ C NMR

$13{ }^{1} \mathrm{H}$ NMR

$14{ }^{1} \mathrm{H}$ NMR

$14{ }^{13}$ C NMR

$6 ち 9$ \&

$1^{1}{ }^{1} \mathrm{H}$ NMR

$1{ }^{13}$ C NMR

[^0]: ${ }^{1}$ \#: These methine peaks in two phenyl groups can not be quantified by either peak heights or integral values due to deformation and overlapping.

[^1]: ${ }^{2}$ The product appears as an equal mount of E / Z mixture.

[^2]: ${ }^{3}$ Fletcher, S. R.; Baker, R.; Chambers, M. S.; Herbert, R. H.; Hobbs, S. C.; Thomas, S. R.; Verrier, H. M.; Watt, A. P.; Ball, R. G. J. Org. Chem. 1994, 59, 1771.

