Supporting Information

Mechano- and Photochromic Dual-responsive Properties of an Amino Acid-based Molecule in Polymorphic Phase

Mingjun Teng^a, Zhijian Wang^a, Zhiyong Ma^a, Xiaofang Chen^b and Xinru Jia^{a*}

1. Synthesis of the targeted molecule

To a stirring CHCl₃ solution of $2^{[S1]}$ (0.3 g, 0.5 mmol), 0.5 ml Et₃N and 2anthracene-carboxylic acid (0.18 g 0.8 mmol) were mixed at -15°C. Then N,N'dicyclohexylcarbodiimide (0.19 g, 0.9 mmol) and N-Hydroxybenzotriazole (5 mg, 0.03 mmol) were added slowly. After the solution was stirred for 2 days, the mixture was concentrated under vacuum. **1** was purified the silica gel column chromatography using CH₂Cl₂/THF (10:1) as the eluent (yield: 80 %).

¹H NMR (500 MHz, CDCl₃, δ): 8.43-8.41 (d, 2H), 8.37 (s, 1H), 8.00-7.98 (m, 3H), 7.71-7.70 (d, 1H), 7.52-7.49 (m, 2H), 7.31-7.26 (m, 15H), 7.05-7.00 (dd, 2H), 5.15 (s, 2H), 5.05-5.00 (m, 3H), 4.92 (b, 1H), 3.21-3.21 (m, 2H), 3.09-2.91 (dd, 2H) ¹³C NMR (125 MHz, CDCl₃, δ): 170.75, 170.41, 169.95, 167.16, 136.19, 135.21, 135.03, 132.76, 132.15, 132.04, 130.40, 130.32, 129.43, 128.84, 128.66, 128.58, 128.56, 128.51, 128.49, 128.40, 128.32, 128.14, 128.10, 127.09, 126.33, 126.20, 125.85, 122.67, 67.63, 66.87, 54.54, 48.88, 38.29, 36.23

Element Calcd for C₄₂H₃₆N₂O₆: C 75.89; H 5.46, N 4.21. Found. C 75.66; H 5.61, N 4.17.

HR-ESI Calcd. For C₄₂H₃₆N₂O₆: 664.2646. Found. [M+H]⁺: 665.2654, [M+Na]⁺:687.2471

2. Thermogravimetric analysis (TGA) of original sample of 1.

Figure S1. TGA curve of original sample of 1.

3. IR spectra of the sample before and after shearing

Figure S2. FT-IR spectra of the sample before (black) and after grinding (red).

4. AFM image of O-xerogel

Figure S3. AFM image of O-xerogel sample.

5. Optical property of grinding sample with different radiation time.

Figure S4. UV-vis absorption spectra of grinding sample irradiated with different time.

6. POM images of O-xerogel before and after grinding.

Figure S5. POM images of the tapes (a) before and (b) after grinding.

7. The mass spectra of grinding sample upon UV irradiation

Figure S6. (a) low resolution MS and (b) high resolution MS spectrum of grinding sample upon UV irradiation

8. The switching cycles of the sample by grinding and heating

Figure S7. The switching cycles of the sample by grinding and heating.

[S1] Teng, M. J.; Jia, X. R.; Yang, S.; Chen, X. F.; Wei, Y. Adv. Mater., 2012, 24, 1255–1261.