Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Synthesis of Glycopeptoid Sulfonamides Diversifying *N*-glycopeptide Linkage Region Mimic

Anadi Singhamahapatra,^a* Laxminarayan Sahoo,^a Babu Varghese^b and Duraikkannu Loganathan^{ta}

^a Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India Email: <u>singhaindia@gmail.com</u>

^b Sophisticated Analytical Instrumentation Facility, Indian Institute of Technology Madras, Chennai- 600036, India

¹ Deceased on 9th February, 2013

[•] Correspondence: Anadi Singhamahapatra, Department of Chemistry, Indian Institute of Technology Madras, Chennai – 600036, India; Tel.: +91-44-22575221, +91-9884242732; Fax: 091-44-22570509; E-mail: singhaindia@gmail.com

Contents

Experimental Section (synthesis and spectral data of compounds)Se	6
Figure S1 ¹ H NMR (400 MHz, CDCl ₃) of compound 1S2	23
Figure S2 ¹³ C NMR (100 MHz, CDCl ₃) of compound 1S23	3
Figure S3 ¹ H NMR (400 MHz, CDCl ₃) of compound 2S24	ļ
Figure S4 ¹³ C NMR (100 MHz, CDCl ₃) of compound 2S24	1
Figure S5 ¹ H NMR (400 MHz, CDCl ₃) of compound 3S2	25
Figure S6 ¹³ C NMR (100 MHz, CDCl ₃) of compound 3 S2:	5
Figure S7 ¹ H NMR (400 MHz, CDCl ₃) of compound 4 S26	6
Figure S8 ¹³ C NMR (100 MHz, CDCl ₃) of compound 4S2	26
Figure S9 ¹ H NMR (400 MHz, CDCl ₃) of compound 9	27
Figure S10 ¹³ C NMR (100 MHz, CDCl ₃) of compound 9S2	27
Figure S11 ¹ H NMR (400 MHz, CDCl ₃) of compound 10 S28	8
Figure S12 ¹³ C NMR (100 MHz, CDCl ₃) of compound 10S28	8
Figure S13 ¹ H NMR (400 MHz, CDCl ₃) of compound 11 S2	29
Figure S14 ¹³ C NMR (100 MHz, CDCl ₃) of compound 11S29	9
Figure S15 ¹ H NMR (400 MHz, CDCl ₃) of compound 12 S3	30
Figure S16 ¹³ C NMR (100 MHz, CDCl ₃) of compound 12 S3	30
Figure S17 ¹ H NMR (400 MHz, CDCl ₃) of compound 13S3	1
Figure S18 ¹³ C NMR (100 MHz, CDCl ₃) of compound 13 S3	1
Figure S19 ¹ H NMR (400 MHz, CDCl ₃) of compound 14 S32	2

Figure S20 ¹³ C NMR (100 MHz, CDCl ₃) of compound 14 S32
Figure S21 ¹ H NMR (400 MHz, CDCl ₃) of compound 15 S33
Figure S22 ¹³ C NMR (100 MHz, CDCl ₃) of compound 15
Figure S23 ¹ H NMR (400 MHz, CDCl ₃) of compound 16 S34
Figure S24 ¹³ C NMR (100 MHz, CDCl ₃) of compound 16 S34
Figure S25 ¹ H NMR (400 MHz, CDCl ₃) of compound 17 S35
Figure S26 ¹³ C NMR (100 MHz, CDCl ₃) of compound 17 S35
Figure S27 ¹ H NMR (400 MHz, CDCl ₃) of compound 18 S36
Figure S28 ¹³ C NMR (100 MHz, CDCl ₃) of compound 18 S36
Figure S29 ¹ H NMR (400 MHz, CDCl ₃) of compound 23 S37
Figure S30 ¹³ C NMR (100 MHz, CDCl ₃) of compound 23
Figure S31 ¹ H NMR (400 MHz, CDCl ₃) of compound 24
Figure S32 ¹³ C NMR (100 MHz, CDCl ₃) of compound 24
Figure S33 ¹ H NMR (400 MHz, CDCl ₃) of compound 25 S39
Figure S34 ¹³ C NMR (100 MHz, CDCl ₃) of compound 25
Figure S35 ¹ H NMR (400 MHz, CDCl ₃) of compound 26
Figure S36 ¹³ C NMR (100 MHz, CDCl ₃) of compound 26
Figure S37 ¹ H NMR (400 MHz, CDCl ₃) of compound 27 S41
Figure S38 ¹³ C NMR (100 MHz, CDCl ₃) of compound 27
Figure S39 ¹ H NMR (500 MHz, CDCl ₃) of compound 28 S42
Figure S40 ¹³ C NMR (125 MHz, CDCl ₃) of compound 28

Figure S41 ¹ H NMR (400 MHz, CDCl ₃) of compound 29 S43
Figure S42 ¹³ C NMR (100 MHz, CDCl ₃) of compound 29
Figure S43 ¹ H NMR (400 MHz, CDCl ₃) of compound 30S44
Figure S44 ¹³ C NMR (100 MHz, CDCl ₃) of compound 30
Figure S45 ¹ H NMR (500 MHz, CDCl ₃) of compound 31S45
Figure S46 ¹³ C NMR (125 MHz, CDCl ₃) of compound 31
Figure S47 ¹ H NMR (400 MHz, CDCl ₃) of compound 32 S46
Figure S48 ¹³ C NMR (100 MHz, CDCl ₃) of compound 32
Figure S49 ¹ H NMR (400 MHz, CDCl ₃) of compound 33 S47
Figure S50 ¹³ C NMR (100 MHz, CDCl ₃) of compound 33
Figure S51 ¹ H NMR (400 MHz, CDCl ₃) of compound 34
Figure S52 ¹³ C NMR (100 MHz, CDCl ₃) of compound 34
Figure S53 ¹ H NMR (400 MHz, CDCl ₃) of compound 35S49
Figure S54 ¹³ C NMR (100 MHz, CDCl ₃) of compound 35
Figure S55 ¹ H NMR (400 MHz, CDCl ₃) of compound 38 S50
Figure S56 ¹³ C NMR (100 MHz, CDCl ₃) of compound 38
Figure S57 ¹ H NMR (400 MHz, CDCl ₃) of compound 36
Figure S58 ¹³ C NMR (100 MHz, CDCl ₃) of compound 36
Figure S59 ¹ H NMR (400 MHz, CDCl ₃) of compound 39 S52
Figure S60 ¹³ C NMR (100 MHz, CDCl ₃) of compound 39
Figure S61 ¹ H NMR (400 MHz, CDCl ₃) of compound 37S53

Figure S62 13 C NMR (100 MHz, CDCl ₃) of compound 37
Figure S63 ¹ H NMR (400 MHz, CDCl ₃) of compound 40S54
Figure S64 ¹³ C NMR (100 MHz, CDCl ₃) of compound 40
X-Ray crystallographic analysis of <i>N</i> -propargylated sulfonamides (3 , 4 , 28 and 29)S55
Table S1 Data collection and refinement parameters for the compound 3, 4, 28 and 29
Figure S65 ORTEP representation diagram in the crystal of compound 3S56
Figure S66 Unit cell packing diagram of compound 3
Figure S67 ORTEP representation diagram in the crystal of compound 4S57
Figure S68 Unit cell packing diagram of compound 4
Figure S69 ORTEP representation diagram in the crystal of compound 28S58
Figure S70 Unit cell packing diagram of compound 28
Figure S71 ORTEP representation diagram in the crystal of compound 29
Figure S72 Unit cell packing diagram of compound 29
Table S1 Comparative torsion angles in the crystal structure of compound 3 and 4
Table S2 Comparative torsion angles in the crystal structure of compound 28 and 29
Table S3 Parameters of C-HO interactions in compounds 3, 4, 28 and 29
Figure S73 C-HO interactions of the sulfonamide oxygen in compound 3
Figure S74 Infinite chain of C-HO interactions of the sulfonamide oxygen in compound 4.S61
Figure S75 Infinite chain of C-HO interactions in the crystal structure of compound 28S62
Figure S76 Infinite chain of C-HO interactions in the crystal structure of compound 29S62

Experimental Section (synthesis and spectral data of compounds)

General Information: All the solvents were used after distillation and dry solvents were prepared using standard methods. All reagents purchased from commercial sources were used without any purification. ¹H and ¹³C NMR spectra were recorded on 400 MHz NMR spectrometer. The assignment of ¹H NMR spectra was done with the help of ¹H-¹H COSY spectra. All mass spectra were recorded in Q-TOF electrospray ionization spectrometer. Column chromatography was performed over 100-200 mesh silica with ethyl acetate and hexane as the eluent.

1. Synthesis of vinylsulfonamide functionalized N-propargylated α -peptoid building block

(1): Propargyl amine (0.5 mL, 7.8 mmol) was added to a suspension of K_2CO_3 (1.07 g, 7.8 mmol) in dry acetonitrile (10 mL) at 0 °C. To this stirred mixture, *tert*-butyl bromoacetate (1.2 mL, 8.0 mmol) was added drop wise at 0 °C. Stirring was continued for 24 h allowing the mixture to come to room temperature. The reaction mixture was filtered and the residue was washed with dichloromethane (5 mL x 2). The combined filtrate was concentrated and dried under vacuum. The crude reaction mixture was dissolved in dry dichloromethane (10 mL) and cooled to 0 °C. Then diisopropylethylamine (2.7 mL, 15.0 mmol) was added to the stirred reaction mixture followed by dropwise addition of chloroethanesulfonyl chloride (0.8 mL, 7.8 mmol) at 0 °C. The reaction mixture was stirred for 24 h allowing it to come to room temperature. After completion of the reaction, the reaction mixture was diluted with dichloromethane (30 mL), washed with water (20 mL x 2) and brine solution (20 mL). The organic layer was dried over anhydrous sodium sulfate, and then concentrated to dryness. The crude reaction mixture thus obtained was purified by column chromatography to give the title compound as syrup.

Yield 70% (1.50 g), ¹H-NMR (CDCl₃, 400 MHz): δ 6.64-6.58 (m, 1H, alkene C<u>H</u>), 6.26 (d, 1H, J = 16.8 Hz, alkene C<u>H</u>), 5.98 (d, 1H, J = 9.6 Hz, alkene C<u>H</u>), 4.15 (d, 2H, J = 2.0 Hz, -C<u>H</u>₂-), 4.00 (s, 2H, -C<u>H</u>₂-), 2.37 (t, 1H, J = 2.4 Hz, alkyne C<u>H</u>), 1.47 (s, 9H, -C{C<u>H</u>₃}₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ 167.8 (-<u>C</u>O-), 135.2, 127.2, 82.6, 74.4, 47.6, 37.2, 28.1 ppm; ESI-MS HRMS: Calculated for C₁₁H₁₇NO₄NaS ([M+Na]⁺): 282.0776; found 282.0774.

2. Synthesis of vinylsulfonamide functionalized *N*-propargylated β -peptoid building block (2): Propargyl amine (0.7 mL, 10.9 mmol) was added to a solution of *tert*-butyl acrylate (1.1 mL, 7.8 mmol) in dry methanol (10 mL) at room temperature. The mixture was stirred at 50 °C for 24 h. Then excess reagent and solvent were removed by applying vacuum. The crude reaction mixture was dissolved in dry dichloromethane (10 mL) and cooled to 0 °C. Then diisopropylethylamine (2.7 mL, 15 mmol) was added to the stirred reaction mixture followed by dropwise addition of chloroethanesulfonyl chloride (0.8 mL, 7.8 mmol) at 0 °C. The reaction mixture was stirred for 24 h allowing it to come to room temperature. After completion of the reaction the reaction mixture was diluted with dichloromethane (30 mL), washed with water (20 mL x 2) and brine solution (20 mL). The organic layer was dried over anhydrous sodium sulfate, and then concentrated to dryness. The crude reaction mixture thus obtained was purified by column chromatography to give the title compound as syrup.

Yield 85% (1.96 g), ¹H-NMR (CDCl₃, 400 MHz): δ 6.56-6.53 (m, 1H, alkene C<u>H</u>), 6.26 (d, 1H, *J* = 13.2 Hz, alkene C<u>H</u>), 6.01 (d, 1H, *J* = 8.0 Hz, alkene C<u>H</u>), 4.14 (s, 2H, -C<u>H</u>₂-), 3.42 (t, 2H, *J* = 5.6 Hz, N-C<u>H</u>₂-CH₂), 2.60-2.57 (m, 2H, N-CH₂-C<u>H</u>₂), 2.35 (t, 1H, *J* = 2.0 Hz, alkyne C-<u>H</u>), 1.45 (s, 9H, -C{C<u>H</u>₃}) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ 170.5 (-<u>C</u>O-), 134.1, 127.8, 81.2, 74.1, 42.6, 37.3, 35.1, 28.0 ppm; ESI-MS HRMS: Calculated for C₁₂H₁₉NO₄NaS ([M+Na]⁺): 296.0932; found 296.0919.

3. Synthesis of *N*-propargylated phthalimide protected α/β -peptoid sulfonamide building blocks (3 & 4): A mixture of vinylsulfonamide functionalized *N*-propargylated peptoid building block (1 or 2; 1 mmol), potassium phthalimide (40 mg, 0.2 mmol) and phthalimide (147 mg, 1 mmol) were dissolved in dry acetonitrile (15 mL) and stirred at 60 °C for 24 h. After completion of the reaction as monitored by TLC, the reaction mixture was concentrated to dryness. Analytically pure compounds were obtained after purification by column chromatography to give the title compounds.

Compound **3**: yield 94% (400 mg), m.p. 114-116 °C, ¹H-NMR (CDCl₃, 400 MHz): δ 7.86-7.84 (m, 2H, aromatic C<u>H</u>), 7.73-7.71 (m, 2H, aromatic C<u>H</u>), 4.24 (d, 2H, J = 2.4 Hz, N-C<u>H</u>₂-C), 4.18 (t, 2H, J = 6.4 Hz, N-C<u>H</u>₂-CH₂), 4.10 (s, 2H, N-C<u>H</u>₂-CO), 3.54 (t, 2H, J = 6.4 Hz, -N-CH₂-C<u>H</u>₂), 2.35 (t, 1H, J = 2.3 Hz, alkyne C<u>H</u>), 1.48 (s, 9H, -C{C<u>H</u>₃}) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ 168.1 (-<u>C</u>O-), 167.8 (-<u>C</u>O-), 134.3, 134.2 (x 2), 132.0, 123.6 (x 2), 82.8, 77.4, 74.4, 50.2, 48.3, 37.8, 32.3, 28.1 ppm; ESI-MS HRMS: Calculated for C₁₉H₂₂N₂O₆NaS ([M+Na]⁺): 429.1096; found 429.1114.

Compound 4: yield 96% (425 mg), m.p. 110-112 °C, ¹H-NMR (CDCl₃, 400 MHz): δ 7.87-7.85 (m, 2H, aromatic C<u>H</u>), 7.74-7.72 (m, 2H, aromatic C<u>H</u>), 4.20-4.15 (m, 4H, N-C<u>H</u>₂-C & N-C<u>H</u>₂-CH₂-S), 3.61 (t, 2H, *J* = 6.8 Hz, N-C<u>H</u>₂-CH₂-CO), 3.48 (t, 2H, *J* = 6.8 Hz, N-CH₂-C<u>H</u>₂-S), 2.58 (t, 2H, *J* = 6.8Hz, N-CH₂-C<u>H</u>₂-CO), 2.39 (t, 1H, *J* = 2.3 Hz, alkyne -C<u>H</u>), 1.45 (s, 9 H, -C{C<u>H</u>₃}) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ 170.5 (-<u>C</u>O-), 167.7 (-<u>C</u>O-), 134.3, 132.0, 123.6, 81.4, 77.6, 74.5, 48.7, 43.0, 37.0, 35.2, 32.4, 28.1 ppm; ESI-MS HRMS: Calculated for C₂₀H₂₄N₂O₆NaS ([M+Na]⁺): 443.1253; found 443.1265.

4. Synthesis of triazole linked *N*-glycopeptoid sulfonamides (9-18): *N*-propargylated peptoidsulfonamide building block (1-4, 1 mmol) and per-*O*-acetylated sugar azide (5-8, 1 mmol) were dissolved in acetone (15 mL). To the stirred reaction mixture, a solution of copper sulfate (50 mg, 0.2 mmol) in water (3 mL) was added followed by the addition of aqueous solution (3 mL) of sodium ascorbate (80 mg, 0.4 mmol). The reaction mixture was allowed to stir at room temperature for 24 h. After completion of the reaction as monitored by TLC, acetone was removed by applying vacuum. Ethyl acetate (50 mL) was added to the reaction mixture and washed with water (20 mL) followed by brine solution (20 mL). The organic layer was dried over anhydrous sodium sulfate and concentrated to dryness. The crude product was purified by column chromatography by eluting with ethyl acetate and hexane.

Compound **9**: yield 90% (590 mg), m.p. 144-146 °C, $[\alpha]_D$: -0.6° (c = 0.3, CHCl₃), ¹H-NMR (CDCl₃, 400 MHz): δ 7.89 (s, 1H, triazole C<u>H</u>), 6.72-6.65 (m, 1H, alkene C<u>H</u>), 6.29 (d, 1H, *J* = 16.4 Hz, alkene C<u>H</u>), 5.99 (d, 1H, *J* = 9.6 Hz, alkene C<u>H</u>), 5.86-5.83 (m, 1H, H-1), 5.43-5.41 (m, 2H, H-2 & H-3), 5.27-5.23 (m, 1H, H-4), 4.48 (s, 2H, N-C<u>H</u>₂-CO), 4.34-4.29 (m, 1H, H-6a), 4.18-4.13 (m, 1H, H-6b), 4.03-3.99 (m, 1H, H-5), 3.95 (s, 2H, N-C<u>H</u>₂-triazole), 2.10, 2.07, 2.03, 1.89 (4s, 12, 4 x COC<u>H</u>₃), 1.46 (s, 9H, -C{C<u>H</u>₃}) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ 170.5, 169.9, 169.2, 168.7, 168.3, 144.1, 135.9, 126.7, 121.9, 85.8, 82.5, 75.2, 72.5, 70.4, 67.6, 61.4, 48.2, 42.6, 28.0, 20.7, 20.5, 20.1 ppm; ESI-MS HRMS: Calculated for C₂₅H₃₆N₄O₁₃SNa ([M+Na]⁺): 655.1897; found 655.1872.

Compound **10**: yield 92% (615 mg), m.p. 118-120 °C, $[\alpha]_D$: -5.3° (c = 0.7, CHCl₃), ¹H-NMR (CDCl₃, 400 MHz): δ 7.88 (s, 1H, triazole C<u>H</u>), 6.49-6.43 (m, 1H, alkene C<u>H</u>), 6.21 (d, 1H, *J* = 16.4 Hz, alkene C<u>H</u>), 5.91 (d, 1H, *J* = 10 Hz, alkene C<u>H</u>), 5.85 (d, 1H, *J* = 8.8 Hz, H-1), 5.46-5.37 (m, 2H, H-2 & H-3), 5.25 (t, 1H, *J* = 9.2 Hz, H-4), 4.57-4.48 (m, 2H, N-C<u>H</u>₂-triazole), 4.34-

4.30 (m, 1H, H-6a), 4.18-4.15 (m, 1H, H-6b), 4.03-3.99 (m, 1H, H-5), 3.40 (t, 2H, J = 7.2 Hz, N-C<u>H</u>₂-CH₂-CO), 2.58-2.55 (m, 2H, N-CH₂-C<u>H</u>₂-CO), 2.10, 2.07, 2.03, 1.87 (4s, 12, 4 x COC<u>H</u>₃), 1.44 (s, 9H, -C{C<u>H</u>₃}) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ 170.7, 170.6, 170.0, 169.4, 168.8, 144.4, 135.1, 127.0, 122.0, 86.0, 81.2, 77.4, 75.3, 72.5, 70.6, 67.7, 61.5, 43.3, 42.7, 35.2, 28.1, 20.8, 20.7, 20.6, 20.2 ppm; ESI-MS HRMS: Calculated for C₂₆H₃₈N₄O₁₃NaS ([M+Na]⁺): 669.2054; found 669.2080.

Compound **11**: yield 95% (740 mg), m.p. 164-166 °C, $[\alpha]_{D}$: -4.5° (c = 0.5, CHCl₃), ¹H-NMR (CDCl₃, 400 MHz): δ 8.01 (s, 1H, triazole C<u>H</u>), 7.91-7.86 (m, 2H, aromatic C<u>H</u>), 7.75-7.73 (m, 2H, aromatic C<u>H</u>), 5.86-5.82 (m, 1H, H-1), 5.45-5.39 (m, 2H, H-2 & H-3), 5.30-5.25 (m, 1H, H-4), 4.72-4.60 (ABq, 2H, N-C<u>H</u>₂-triazole), 4.33-4.29 (m, 1H, H-6a), 4.25-4.12 (m, 3H, H-6b & N-C<u>H</u>₂-CH₂-S), 4.04-3.99 (m, 3H, H-5 & N-C<u>H</u>₂-CO), 3.64-3.54 (m, 2H, N-CH₂-C<u>H</u>₂-S), 2.09, 2.07, 1.97, 1.85 (4s, 12H, 4 x COC<u>H</u>₃), 1.46 (s, 9H, -C{C<u>H</u>₃}) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ 170.6, 169.9, 169.4, 168.8, 168.5, 167.9, 144.1, 134.1, 132.0, 123.5, 122.1, 85.8, 82.6, 75.2, 72.5, 70.4, 67.7, 61.5, 50.6, 48.6, 43.2, 32.6, 28.0, 20.7, 20.6, 20.5, 20.1 ppm; ESI-MS HRMS: Calculated for C₃₃H₄₂N₅O₁₅S ([M+H]⁺): 780.2398; found 780.2373.

Compound **12**: yield 92% (730 mg), m.p. 134-136 °C, $[\alpha]_D:-1.3^\circ$ (c = 0.4, CHCl₃), ¹H-NMR (CDCl₃, 400 MHz): δ 8.04 (s, 1H, triazole C-<u>H</u>), 7.90-7.88 (m, 2H, aromatic C-<u>H</u>), 7.74-7.72 (m, 2H, aromatic C-<u>H</u>), 5.85-5.83 (m, 1H, H-1), 5.42-5.40 (m, 2H, H-2 & H-3), 5.33-5.28 (m, 1H, H-4), 4.68-4.55 (ABq, 2H, N-C<u>H</u>₂-triazole), 4.35-4.30 (m, 1H, H-6a), 4.21-4.11 (m, 3H, H-6b & N-C<u>H</u>₂-CH₂-S), 4.04-4.00 (m, 1H, H-5), 3.50-3.42 (m, 4H, N-CH₂-C<u>H</u>₂-S & N-C<u>H</u>₂-CH₂-CH₂-CO), 2.61-2.57 (m, 2H, N-CH₂-C<u>H</u>₂-CO), 2.09, 2.08, 1.96, 1.83 (4s, 12H, 4 x COC<u>H</u>₃), 1.44 (s, 9H, -C{C<u>H</u>₃}) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ 170.6, 169.9, 169.4, 168.9, 167.8, 144.0,

134.2, 132.0, 123.6, 122.1, 86.0, 81.2, 75.3, 72.5, 70.6, 67.8, 61.6, 49.7, 42.9, 42.0, 34.8, 32.6, 28.1, 20.8, 20.6, 20.5, 20.1 ppm; ESI-MS HRMS: Calculated for C₃₄H₄₄N₅O₁₅S ([M+H]⁺): 794.2555; found 794.2523.

Compound **13**: yield 85% (680 mg), m.p. 188-190 °C, $[\alpha]_{D}$: -19.6° (c = 0.6, CHCl₃), ¹H-NMR (CDCl₃, 400 MHz): δ 8.02 (s, 1H, triazole C<u>H</u>), 7.89-7.86 (m, 2H, aromatic C<u>H</u>), 7.74-7.72 (m, 2H, aromatic C<u>H</u>), 6.13 (d, 1H, *J* = 9.2 Hz, N<u>H</u>), 6.00 (d, 1H, *J* = 10 Hz, H-1), 5.47 (t, 1H, *J* = 10 Hz, H-3), 5.26 (t, 1H, *J* = 9.6 Hz, H-4), 4.71-4.60 (ABq, 2H, N-C<u>H</u>₂-triazole), 4.54-4.47 (m, 1H, H-2), 4.32-4.27 (m, 1H, H-6a), 4.23-4.11 (m, 3H, H-6b & N-C<u>H</u>₂-CH₂-S), 4.05-3.94 (m, 3H, H-5 & N-C<u>H</u>₂-CO), 3.62-3.58 (m, 2H, N-CH₂-C<u>H</u>₂-S), 2.08, 2.07, 2.01, 1.73 (4s, 12H, 4 x COC<u>H</u>₃), 1.46 (s, 9H, C{CH₃}₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ 170.9, 170.7, 170.4, 169.4, 168.6, 167.9, 143.7, 134.2, 132.1, 123.6, 122.7, 86.2, 82.7, 75.1, 72.1, 68.0, 61.8, 53.9, 50.6, 48.6, 43.2, 32.6, 28.1, 22.8, 20.8, 20.7 ppm; ESI-MS HRMS: Calculated for C₃₃H₄₂N₆O₁₄NaS ([M+Na]⁺): 801.2377; found 801.2360.

Compound **14**: yield 80% (630 mg), m.p. 150-152 °C, $[\alpha]_{D}$: -14.8° (c = 0.9, CHCl₃), ¹H-NMR (CDCl₃, 400 MHz): δ 8.06 (s, 1H, triazole C<u>H</u>), 7.89-7.87 (m, 2H, aromatic C<u>H</u>), 7.73-7.71 (m, 2H, aromatic C<u>H</u>), 6.24 (d, 1H, *J* = 9.2 Hz, N<u>H</u>), 6.03 (d, 1H, *J* = 9.6 Hz, H-1), 5.49 (t, 1H, *J* = 9.6 Hz, H-3), 5.30 (t, 1H, *J* = 10 Hz, H-4), 4.67-4.55 (ABq, 2H, N-C<u>H</u>₂-triazole), 4.53-4.46 (m, 1H, H-2), 4.33-4.29 (m, 1H, H-6a), 4.19-4.12 (m, 3H, H-6b & N-C<u>H</u>₂-CH₂-S), 4.08-4.03 (m, 1H, H-5), 3.52-3.45 (m, 4H, N-CH₂-C<u>H</u>₂-S & N-C<u>H</u>₂- CH₂-CO), 2.59 (t, 2H, *J* = 6.8 Hz, N-CH₂-C<u>H</u>₂-CO), 2.08, 2.07, 2.00, 1.72 (4s, 12H, 4 x COC<u>H</u>₃), 1.43 (s, 9H, -C{C<u>H</u>₃}) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ 170.8, 170.7, 170.4, 169.4, 167.9, 143.6, 134.2, 132.1, 123.6, 122.7, 86.2,

81.3, 75.1, 72.1, 68.1, 61.8, 54.1, 49.7, 43.0, 42.1, 34.9, 32.7, 28.1, 22.8, 20.8, 20.7, 20.6 ppm; ESI-MS HRMS: Calculated for C₃₄H₄₅N₆O₁₄S ([M+H]⁺): 793.2714; found 793.2695.

Compound **15**: yield 94% (730 mg), m.p. 79-80 °C, $[\alpha]_{D}$: +3.0° (c = 1, CHCl₃), ¹H-NMR (CDCl₃, 400 MHz): δ 7.97 (s, 1H, triazole C<u>H</u>), 7.89-7.84 (m, 2H, aromatic C<u>H</u>), 7.75-7.71 (m, 2H, aromatic C<u>H</u>), 5.81 (d, 1H, *J* = 9.2 Hz, H-1), 5.54 (d, 1H, *J* = 3.2 Hz, H-4), 5.49 (t, 1H, *J* = 9.2 Hz, H-2), 5.26-5.23 (m, 1H, H-3), 4.70-4.61 (ABq, 2H, N-C<u>H</u>₂-triazole), 4.25-4.09 (m, 5H, H-5, H-6a, H-6b & N-C<u>H</u>₂-CH₂-S), 3.99 (s, 2H, N-C<u>H</u>₂-CO), 3.61-3.58 (m, 2H, N-CH₂-C<u>H</u>₂-S), 2.25, 2.05, 2.00, 1.87 (4s, 12H, 4 x COC<u>H</u>₃), 1.47 (s, 9H, -C{C<u>H</u>₃}) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ 170.4, 170.2, 169.8, 168.9, 168.6, 167.8, 134.1, 132.1, 123.5, 122.2, 86.4, 82.7, 74.2, 70.7, 68.1, 66.8, 61.3, 50.5, 48.3, 43.1, 32.5, 28.0, 20.8, 20.7, 20.5, 20.2 ppm; ESI-MS HRMS: Calculated for C₃₃H₄₂N₅O₁₅S ([M+H]⁺): 780.2398; found 780.2385.

Compound **16**: yield 92% (730 mg), m.p. 86-88 °C, $[\alpha]_D$: +7.5° (c = 1, CHCl₃), ¹H-NMR (CDCl₃, 400 MHz): δ 7.96 (s, 1H, triazole C<u>H</u>), 7.89-7.84 (m, 2H, aromatic C<u>H</u>), 7.73-7.71 (m, 2H, aromatic C<u>H</u>), 5.78 (d, 1H, *J* = 9.2 Hz, H-1), 5.54 (d, 1H, *J* = 3.2 Hz, H-4), 5.49 (t, 1H, *J* = 9.6 Hz, H-2), 5.25-5.22 (m, 1H, H-3), 4.60-4.59 (ABq, 2H, N-C<u>H</u>₂-triazole), 4.22-4.13 (m, 5H, H-5, H-6a, H-6b & N-C<u>H</u>₂-CH₂-S), 3.50-3.45 (m, 4H, N-CH₂-C<u>H</u>₂-S & N-C<u>H</u>₂-CH₂-CO), 2.60-2.58 (m, 2H, N-CH₂-C<u>H</u>₂-CO), 2.25, 2.04, 2.00, 1.85 (4s, 12H, 4 x COC<u>H</u>₃), 1.44 (s, 9H, -C{C<u>H</u>₃}₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ 170.7, 170.4, 170.2, 169.9, 169.0, 167.8, 144.1, 134.2, 132.1, 123.5, 122.2, 86.6, 81.3, 74.3, 70.7, 68.2, 66.8, 61.3, 49.4, 43.0, 42.2, 34.9, 32.6, 28.2, 20.8, 20.7, 20.6, 20.2 ppm; ESI-MS HRMS: Calculated for C₃₄H₄₄N₅O₁₅S ([M+H]⁺): 794.2555; found 794.2552.

Compound **17**: yield 87% (615 mg), m.p. 76-78 °C, $[\alpha]_{D}$: -9.1° (c = 1, CHCl₃), ¹H-NMR (CDCl₃, 400 MHz): δ 7.98 (s, 1H, triazole C<u>H</u>), 7.89-7.87 (m, 2H, aromatic C<u>H</u>), 7.74-7.72 (m, 2H, aromatic C<u>H</u>), 5.76-5.74 (m, 1H, H-1), 5.41-5.38 (m, 2H, H-2 & H-3), 5.21-5.15 (m, 1H, H-4), 4.70-4.60 (ABq, 2H, N-C<u>H</u>₂-triazole), 4.32-4.28 (m, 1H, H-5a), 4.20 (t, 2H, *J* = 6.4 Hz, N-C<u>H</u>₂-CH₂-S), 3.97 (s, 2H, N-C<u>H</u>₂-CO), 3.63-3.52 (m, 3H, H-5b & N-CH₂-C<u>H</u>₂-S), 2.08, 2.01, 1.87 (3s, 9H, 3 x COC<u>H</u>₃), 1.45 (s, 9H, -C{C<u>H</u>₃}) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ 169.9, 169.8, 168.9, 168.6, 167.9, 144.1, 134.1, 132.0, 123.5, 122.1, 86.4, 82.6, 72.0, 70.5, 68.4, 65.6, 50.6, 48.5, 43.2, 32.6, 28.0, 20.7, 20.6, 20.2 ppm; ESI-MS HRMS: Calculated for C₃₀H₃₈N₅O₁₃S ([M+H]⁺): 708.2187; found 708.2182.

Compound **18**: yield 90% (650 mg), m.p. 156-158 °C, $[\alpha]_D$ -24.7° (c = 0.5, CHCl₃), ¹H-NMR (CDCl₃, 400 MHz): δ 7.99 (s, 1H, triazole C<u>H</u>), 7.89-7.87 (m, 2H, aromatic C<u>H</u>), 7.73-7.71 (m, 2H, aromatic C<u>H</u>), 5.74 (d, 1H, *J* = 8.4 Hz, H-1), 5.44-5.35 (m, 2H, H-2 & H-3), 5.25-5.19 (m, 1H, H-4), 4.65-4.55 (ABq, 2H, N-C<u>H</u>₂-triazole), 4.34-4.29 (m, 1H, H-5a), 4.14-4.10 (m, 2H, N-C<u>H</u>₂-CH₂-S), 3.60 (t, 1H, *J* = 10.8 Hz, H-5b), 3.49-3.43 (m, 4H, N-CH₂-C<u>H</u>₂-S & N-C<u>H</u>₂-CH₂-CH₂-CO), 2.60-2.56 (m, 2H, N-CH₂-C<u>H</u>₂-CO), 2.08, 2.00, 1.85 (3s, 9H, 3 x COC<u>H</u>₃), 1.44 (s, 9H, -C{C<u>H</u>₃}) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ 170.7, 169.9, 169.8, 169.0, 167.8, 144.0, 134.2, 132.1, 123.6, 122.1, 86.7, 81.2, 72.0, 70.7, 68.4, 65.7, 49.6, 42.8, 42.0, 34.9, 32.6, 28.2, 28.1, 20.7, 20.6, 20.1 ppm; ESI-MS HRMS: Calculated for C₃₁H₄₀N₅O₁₃S ([M+H]⁺): 722.2343; found 722.2350.

5. Synthesis of methanesulfonamide of amino acids (23-26): To a solution of amino acid (19-22, 1 mmol) in dry methanol (10 mL), thionyl chloride (0.2 mL, 2.7 mmol) was added at 0 °C. The reaction mixture was stirred for 24 h allowing it to come to room temperature. The

excess reagent and solvent were removed by applying vacuum. Dry dichloromethane (10 mL) was added to the reaction mixture followed by addition of diisopropylethylamine (0.4 mL, 2 mmol). The reaction mixture was cooled to 0 °C and methanesulfonyl chloride (0.1 mL, 1.2 mmol) was added drop by drop. After stirring the reaction mixture for 24 h at room temperature, it was diluted with dichloromethane (100 mL). The organic layer was washed successively with aqueous saturated sodium bicarbonate (30 mL), water (30 mL) and brine solution (20 mL). Then it was dried over anhydrous sodium sulfate and concentrated to dryness to give the desired compounds.

Compound **23**: yield 95% (200 mg), $[\alpha]_D$ -6.0° (c = 0.7, CHCl₃), ¹H-NMR (CDCl₃, 400 MHz): δ 5.27 (d, 1H, *J* = 9.2 Hz, NH), 3.98-3.94 (m, 1H, NH-C<u>H</u>), 3.79 (s, 3H, COOC<u>H</u>₃), 2.95 (s, 3H, SO₂C<u>H</u>₃), 2.22-2.18 (m, 1H, C<u>H</u>Me₂), 1.03 (d, 1H, *J* = 6.4 Hz, CH(C<u>H</u>₃)₂), 0.89 (d, 1H, *J* = 6.8 Hz, CH{C<u>H</u>₃}₂) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ 172.5, 61.2, 52.6, 41.1, 31.2, 19.1, 17.1 ppm; ESI-MS HRMS: Calculated for C₇H₁₆NO₄S ([M+H]⁺): 210.0800; found 210.0801.

Compound **24**: yield 94% (260 mg), $[\alpha]_D 0.9^\circ$ (c = 0.5, CHCl₃), ¹H-NMR (CDCl₃, 400 MHz): δ 7.32-7.18 (m, 5H, aromatic C<u>H</u>), 5.26 (d, 1H, *J* = 9.6 Hz, N<u>H</u>), 4.40-4.34 (m, 1H, NH-C<u>H</u>), 3.17-3.13 (m, 1H, C<u>H</u>₂-Ph), 3.01-2.96 (m, 1H, C<u>H</u>₂-Ph), 3.75 (s, 3H, CO₂C<u>H</u>₃), 2.63 (s, 3H, SO₂C<u>H</u>₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz) δ 172.0, 135.7, 129.5, 128.8, 128.7, 127.4, 57.3, 52.7, 41.2, 39.3 ppm; ESI-MS HRMS: Calculated for C₁₁H₁₅NO₄NaS ([M+Na]⁺): 280.0619; found 280.0615.

Compound **25**: yield 96% (270 mg), $[\alpha]_D$: +8.0° (c = 0.7, CHCl₃), ¹H-NMR (CDCl₃, 400 MHz): δ 7.33-7.18 (m, 5H, aromatic C<u>H</u>), 5.09 (d, 1H, J = 8.4 Hz, N<u>H</u>), 4.42-4.36 (m, 1H, NH-C<u>H</u>), 3.77 (s, 3H, CO₂C<u>H₃</u>), 3.18-3.13 (m, 1H, C<u>H</u>₂-Ph), 3.03-2.97 (m, 1H, C<u>H</u>₂-Ph), 2.64 (s, 3H, SO₂C<u>H₃</u>) ppm; ¹³C-NMR (CDCl₃, 100 MHz): *δ* 172.0, 135.5, 129.7, 129.6, 128.9, 127.5, 57.3, 52.8, 41.3, 39.4 ppm; ESI-MS HRMS: Calculated for C₁₁H₁₅NO₄NaS ([M+Na]⁺): 280.0619; found 280.0628.

Compound **26**: yield 92% (220 mg), $[\alpha]_D$: +57.4° (c = 0.9, CHCl₃), ¹H-NMR (CDCl₃, 400 MHz): δ 5.16 (bs, 1H, N<u>H</u>), 4.02-3.99 (m, 1H, NHC<u>H</u>), 3.79 (s, 3H, COOC<u>H</u>₃), 2.94 (s, 3H, SO₂CH₃), 1.93-1.91 (m, 1H, C<u>H</u>Me-Et), 1.45-1.35 (m, 1H, C<u>H</u>₂-CH₃), 1.21-1.13 (m, 1H, C<u>H</u>₂-CH₃), 1.00-0.89 (m, 6H, CH-CH₃& CH₂-CH₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ 172.7, 60.7, 52.6, 41.1, 38.2, 24.6, 15.7, 11.5 ppm; ESI-MS HRMS: Calculated for C₈H₁₇NO₄NaS ([M+Na]⁺): 246.0776; found 246.0769.

6. Synthesis of *N*-propargylated sulfonamide of amino acids (27-30): To a mixture of methanesulfonamide of amino acid (23-26, 1 mmol.) and potassium carbonate (280 mg, 2 mmol) in a two necked RB flask, dry dimethylformamide (10 mL) was added at room temperature. To this stirred mixture, propargyl bromide (0.1 mL, 1.2 mmol) was added drop by drop. After stirring the reaction mixture for 24 h at room temperature, it was diluted with ethyl acetate (50 mL) and washed with water (30 mL x 3) followed by brine solution (20 mL). The organic layer was dried over anhydrous sodium sulfate and concentrated to dryness. The crude product was purified by column chromatography to give analytically pure compound.

Compound **27**: yield 92% (250 mg), $[\alpha]_D$: -13.5° (c = 0.4, CHCl₃), ¹H-NMR (CDCl₃, 400 MHz): δ 4.39-4.34 (m, 1H, N-CH₂-C),4.02 (d, 1H, J = 10.8 Hz, N-CH-), 3.96-3.91 (m, 1H, N-CH₂-C), 3.77 (s, 3H, COOCH₃), 3.09 (s, 3H, SO₂CH₃), 2.33 (t, 1H, J = 2.4 Hz, alkyne CH), 2.23-2.17 (m, 1H, CHMe₂), 1.00 (d, 3H, J = 6.8 Hz, CH{CH₃}₂), 0.97 (d, 3H, J = 6.8 Hz, CH{CH₃}₂) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ 170.4, 78.6, 72.9, 64.9, 52.1, 40.8, 33.2, 27.4, 19.4, 19.1 ppm; ESI-MS HRMS: Calculated for C₁₀H₁₇NO₄NaS ([M+Na]⁺): 270.0776; found 270.0789.

Compound **28**: yield 94% (300 mg), m.p. 66-68 °C, $[\alpha]_D$: -39.4° (c = 0.4, CHCl₃), ¹H-NMR (CDCl₃, 500 MHz): δ 7.32-7.22 (m, 5H, aromatic C<u>H</u>), 4.82-4.79 (m, 1H, N-C<u>H</u>-), 4.19-4.08 (m, 2H, N-C<u>H</u>₂-), 3.77 (s, 3H, COOC<u>H</u>₃), 3.40-3.35 (m, 1H, C<u>H</u>₂-Ph), 3.07-3.02 (m, 1H, C<u>H</u>₂-Ph), 2.77 (s, 3H, SO₂C<u>H</u>₃), 2.35 (t, 1H, *J* = 2.5 Hz, alkyne C<u>H</u>) ppm; ¹³C-NMR (CDCl₃, 125 MHz): δ 170.5, 136.5, 129.5, 128.7, 127.2, 78.6, 73.5, 61.3, 52.5, 41.0, 36.3, 34.1 ppm; ESI-MS HRMS: Calculated for C₁₄H₁₇NO₄NaS ([M+Na]⁺): 318.0776; found 318.0765.

Compound **29**: yield 90% (285 mg), m.p. 70-72 °C, $[\alpha]_D$: +10.1° (c = 0.2, CHCl₃), ¹H-NMR (CDCl₃, 400 MHz): δ 7.31-7.26 (m, 5H, aromatic C<u>H</u>), 4.83-4.79 (m, 1H, N-C<u>H</u>-), 4.20-4.07 (m, 2H, N-C<u>H</u>₂-), 3.74 (s, 3H, COOC<u>H</u>₃), 3.40-3.35 (m, 1H, C<u>H</u>₂-Ph), 3.08-3.02 (m, 1H, C<u>H</u>₂-Ph), 2.76 (s, 3H, SO₂C<u>H</u>₃), 2.34 (t, 1H, *J* = 2.4Hz, alkyne C<u>H</u>) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ 170.6, 136.6, 129.5, 128.7, 127.2, 78.6, 73.5, 61.4, 52.6, 41.4, 36.4, 34.2 ppm; ESI-MS HRMS: Calculated for C₁₄H₁₇NO₄NaS ([M+Na]⁺): 318.0776; found 318.0778.

Compound **30**: yield 85% (240 mg), $[\alpha]_D$ -52.6° (c = 0.7, CHCl₃, 25 °C), ¹H-NMR (CDCl₃, 400 MHz): δ 4.38-4.34 (m, 1H, N-C<u>H</u>₂-C), 4.10 (d, 1H, *J* = 8.4 Hz, N-C<u>H</u>-CH), 3.99-3.95 (m, 1H, N-C<u>H</u>₂-C), 3.76 (s, 3H, COOC<u>H</u>₃), 3.07 (s, 3H, SO₂C<u>H</u>₃), 2.33 (t, 1H, *J* = 2.0 Hz, alkyne C<u>H</u>), 1.99-1.93 (m, 1H, C<u>H</u>Me-Et), 1.68-1.63 (m, 1H, C<u>H</u>₂-Me), 1.16-1.09 (m, 1H, C<u>H</u>₂-Me), 0.94-0.91 (m, 6H, CH-C<u>H</u>₃ & CH₂-C<u>H</u>₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ 170.6, 78.7, 72.8, 63.9, 52.1, 40.7, 33.6, 33.5, 25.0, 15.6, 10.8 ppm; ESI-MS HRMS: Calculated for C₁₁H₁₉NO₄NaS ([M+Na]⁺): 284.0932; found 284.0926.

7. Synthesis of triazole-linked *N*-glycopeptoid sulfonamides with amino acids (31-34): *N*-propargylated sulfonamide of amino acid (27-30, 0.5 mmol) and per-*O*-acetylated β -D-glucopyranosyl azide (5, 0.5 mmol) were dissolved in acetone (15 mL). To the stirred reaction mixture, a solution of copper sulfate (25 mg, 0.1 mmol) in water (3 mL) was added followed by the addition of aqueous solution (3 mL) of sodium ascorbate (40 mg, 0.2 mmol). The reaction mixture was allowed to stir at room temperature for 24 h. After completion of the reaction as monitored by TLC, acetone was removed by applying vacuum. Ethyl acetate (50 mL) was added to the reaction mixture and washed with water (20 mL) followed by brine solution (20 mL). The organic layer was dried over anhydrous sodium sulfate and concentrated to dryness. The crude product was purified by column chromatography by eluting with ethyl acetate and hexane.

Compound **31**: yield 93% (288 mg), m.p. 154-155 °C, $[\alpha]_{D}$: -38.7° (c = 1.2, CHCl₃), ¹H-NMR (CDCl₃, 500 MHz): δ 7.90 (s, 1H, triazole C<u>H</u>), 5.85 (d, 1H, *J* = 9.0 Hz, H-1), 5.45-5.39 (m, 2H, H-2 & H-3), 5.25 (t, 1H, *J* = 10.0 Hz, H-4), 4.85-4.48 (ABq, 2H, N-C<u>H</u>₂-triazole), 4.31-4.27 (m, 1H, H-6a), 4.17-4.14 (m, 1H, H-6b), 4.04 (d, 1H, *J* = 10.5 Hz, N-C<u>H</u>), 4.01-3.98 (m, 1H, H-5), 3.72 (s, 3H, CO₂C<u>H</u>₃), 2.87 (s, 3H, SO₂C<u>H</u>₃), 2.33-2.30 (m, 1H, C<u>H</u>Me₂), 2.09, 2.07, 2.02, 1.86 (4s, 12H, 4 x COC<u>H</u>₃), 0.93 (d, 3H, *J* = 6.5 Hz, CH{C<u>H</u>₃}₂), 0.84 (d, 3H, *J* = 6.5 Hz, CH{C<u>H</u>₃}₂) ppm; ¹³C-NMR (CDCl₃, 125MHz): δ 171.2, 170.6, 170.0, 169.4, 168.8, 145.0, 122.5, 85.8, 77.4, 75.2, 72.7, 70.3, 67.7, 65.8, 61.5, 52.1, 40.2, 39.4, 31.6, 28.0, 20.7, 20.6, 20.5, 20.2, 19.4, 19.3 ppm; ESI-MS HRMS: Calculated for C₂₄H₃₇N₄O₁₃S ([M+H]⁺): 621.2078; found 621.2058.

Compound **32**: yield 94% (315 mg), m.p. 174-176 °C, $[\alpha]_D$: -38.8° (c = 0.3, CHCl₃, 25 °C), ¹H-NMR (CDCl₃, 400 MHz): δ 7.77 (s, 1H, triazole –C<u>H</u>-), 7.29-7.10 (m, 5H, aromatic C<u>H</u>), 5.79 (d, 1H, *J* = 8.8 Hz, H-1), 5.46-5.38 (m, 2H, H-2 & H-3), 5.24 (t, 1H, *J* = 9.6 Hz, H-4), 4.84-4.79 (m, 1H, N-C<u>H</u>), 4.65-4.47 (ABq, 2H, N-C<u>H₂-triazole</u>), 4.32-4.28 (m, 1H, H-6a), 4.18-4.15 (m, 1H, H-6b), 4.01-3.97 (m, 1H, H-5), 3.64 (s, 3H, CO₂C<u>H₃</u>), 3.36-3.30 (m, 1H, C<u>H</u>₂Ph), 3.12-3.06 (m, 1H, C<u>H</u>₂Ph), 2.64 (s, 3H, SO₂C<u>H</u>₃), 2.09, 2.07, 2.02, 1.82 (4s, 12H, 4 x –COC<u>H</u>₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ 170.9, 170.6, 170.1, 169.4, 168.9, 144.8, 137.0, 129.3, 129.1, 128.7, 128.6, 127.0, 122.7, 85.8, 75.3, 72.7, 70.4, 67.7, 61.8, 61.6, 52.6, 40.6, 40.3, 36.4, 20.8, 20.6, 20.2 ppm; ESI-MS HRMS: Calculated for C₂₈H₃₇N₄O₁₃S ([M+H]⁺): 669.2078; found 669.2083.

Compound **33**: yield: 90% (300 mg), m.p. 184-186 °C, $[\alpha]_{D}$: +1.0° (c = 0.9, CHCl₃), ¹H-NMR (CDCl₃, 400 MHz): δ 7.70 (s, 1H, triazole –C<u>H</u>-), 7.27-7.10 (m, 5H, aromatic C<u>H</u>), 5.81 (d, 1H, *J* = 8.4 Hz, H-1), 5.43-5.41 (m, 2H, H-2 & H-3), 5.24 (t, 1H, *J* = 9.6 Hz, H-4), 4.83-4.79 (m, 1H, N-C<u>H</u>), 4.63-4.47 (ABq, 2H, N-C<u>H</u>₂-triazole), 4.30-4.28 (m, 1H, H-6a), 4.18-4.15 (m, 1H, H-6b), 4.03-3.98 (m, 1H, H-5), 3.67 (s, 3H, CO₂C<u>H</u>₃), 3.38-3.36 (m, 1H, C<u>H</u>₂Ph), 3.09-3.07 (m, 1H, C<u>H</u>₂Ph), 2.78 (s, 3H, SO₂CH₃), 2.09, 2.07, 2.03, 1.85 (4s, 12H, 4 x –COC<u>H</u>₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ 171.0, 170.9, 170.6, 170.0, 169.4, 168.9, 144.8, 136.7, 129.3, 129.1, 128.7, 128.6, 127.0, 126.9, 122.6, 85.8, 75.2, 72.7, 70.3, 67.7, 61.8, 61.6, 52.6, 40.7, 40.3, 40.2, 36.4, 20.8, 20.7, 20.6, 20.2 ppm; ESI-MS HRMS: Calculated for C₂₈H₃₇N₄O₁₃S ([M+H]⁺): 669.2078; found 669.2089.

Compound **34**: yield 88% (280 mg), m.p. 142-144 °C, $[\alpha]_D$: +1.7° (c = 0.3, CHCl₃), ¹H-NMR (CDCl₃, 400 MHz): δ 7.89 (s, 1H, triazole –C<u>H</u>-), 5.84 (d, 1H, J = 9.2 Hz, H-1), 5.49-5.39 (m, 2H, H-2 & H-3), 5.25 (t, 1H, J = 9.6 Hz, H-4), 4.88-4.49 (ABq, 2H, N-C<u>H</u>₂-triazole), 4.31-4.26 (m, 1H, H-6a), 4.16-4.12 (m, 2H, H-6b & N-C<u>H</u>), 4.01-3.97 (m, 1H, H-5), 3.73 (s, 3H, CO₂C<u>H</u>₃), 2.87 (m, 3H, SO₂C<u>H</u>₃), 2.09, 2.07 (2s, 7H, 2 x COC<u>H</u>₃ & C<u>H</u>MeEt), 2.03, 1.87 (2s, 6H, 2 x COC<u>H</u>₃), 1.48-1.36 (m, 1H, C<u>H</u>₂-Me), 1.06-0.95 (m, 1H, C<u>H</u>₂-Me), 0.90-0.77 (m, 6H, CH-C<u>H</u>₃ & C

CH₂-C<u>H</u>₃) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ 171.4, 170.6, 170.1, 169.4, 168.8, 145.1, 122.6, 85.8, 75.1, 72.8, 70.3, 67.7, 64.5, 61.5, 52.1, 40.0, 39.5, 34.0, 25.2, 20.8, 20.6, 20.2, 15.5, 10.5 ppm; ESI-MS HRMS: Calculated for C₂₅H₃₉N₄O₁₃S ([M+H]⁺): 635.2234; found 635.2216.

8. Synthesis of acrylamide of L-valine (35): To a solution of L-valine (19, 1 mmol) in dry methanol (10 mL), thionyl chloride (0.2 mL, 2.7 mmol) was added at 0 °C. The reaction mixture was stirred for 24 h allowing it to come to room temperature. The reagent and solvent were removed by applying vacuum. Dry dichloromethane (10 mL) was added to the reaction mixture followed by addition of diisopropylethylamine (0.4 mL, 2 mmol). The reaction mixture was cooled to 0 °C and acryloyl chloride (0.1 mL, 1.2 mmol) was added drop by drop. After stirring the reaction mixture for 24 h at room temperature it was diluted with dichloromethane (100 mL). After washing the organic layer successively with aqueous saturated sodium bicarbonate (30 mL), water (30 mL) and brine solution (20 mL), it was dried over anhydrous sodium sulfate and concentrated to dryness to give the title compound.

Yield 92% (170 mg), $[\alpha]_D$ -18.7° (c = 1, CHCl₃), ¹H-NMR (CDCl₃, 400 MHz): δ 6.33-6.29 (m, 2H, N<u>H</u> & alkene C<u>H</u>), 6.22-6.15 (m, 1H, alkene C<u>H</u>), 5.69-5.66 (m, 1H, alkene C<u>H</u>), 4.68-4.64 (m, 1H, NH-C<u>H</u>), 3.75 (s, 3H, COOC<u>H</u>₃), 2.22-2.17 (m, 1H, CHMe₂), 0.97-0.91 (m, 6H, CH{C<u>H</u>₃}₂) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ 172.7, 165.4, 130.5, 127.1, 57.1, 52.2, 31.5, 18.9, 17.9 ppm; ESI-MS HRMS: Calculated for C₉H₁₆NO₃ ([M+H]⁺): 186.1130; found 186.1139.

9. Synthesis of vinylsulfonamide of L-valine (38): Dry dichloromethane (10 mL) was added to methyl ester of L-valine (1 mmol, prepared following the method used for compound **35**) followed by addition of diisopropylethylamine (0.5 mL, 2.8 mmol). The reaction mixture was cooled to 0 °C and chloroethanesulfonyl chloride (0.1 mL, 1 mmol) was added drop by drop.

After stirring the reaction mixture for 24 h at room temperature, the reaction mixture was diluted with dichloromethane (100 mL) and washed with aqueous saturated sodium bicarbonate (30 mL), water (30 mL) and brine solution (20 mL). The organic layer was dried over anhydrous sodium sulfate and concentrated to dryness to give the title compound as a syrup.

Yield 90% (220 mg), $[\alpha]_D$: -36.1° (c = 0.7, CHCl₃), ¹H-NMR (CDCl₃, 400 MHz): δ 6.52-6.46 (m, 1H, alkene C<u>H</u>), 6.23 (d, 1H, *J* = 16.8 Hz, alkene C<u>H</u>), 5.90 (d, 1H, *J* = 10.0 Hz, alkene C<u>H</u>), 5.09 (d, 1H, *J* = 9.6 Hz, N<u>H</u>), 3.78-3.73 (m, 4H, NH-C<u>H</u> & COOC<u>H</u>₃), 2.18-2.10 (m, 1H, CH{CH₃}₂), 1.02 (d, 1H, *J* = 6.8 Hz, CH{C<u>H</u>₃}₂), 0.89 (d, 1H, *J* = 6.8 Hz, CH{C<u>H</u>₃}₂) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ 172.4, 136.1, 126.9, 61.0, 52.5, 31.5, 19.1, 17.3 ppm;ESI-MS HRMS: Calculated for C₈H₁₅NO₄NaS ([M+Na]⁺): 244.0619; found 244.0623.

10. Synthesis of β -amide or sulfonamide linked *N*-propargylated sulfonamide of L-valine (36 & 39): Propargyl amine (0.1 mL, 1.5 mmol) was added to a solution of acrylamide or vinylsulfonamide of L-valine (35 or 38, 1 mmol) in dry methanol (10 mL) at room temperature. The mixture was stirred at 50 °C for 24 h. Then excess reagent and solvent were removed by applying vacuum. The crude reaction mixture was dissolved in dry dichloromethane (10 mL) and cooled to 0 °C. Then diisopropylethylamine (0.2 mL, 1 mmol) was added to the stirred reaction mixture followed by dropwise addition of methanesulfonyl chloride (0.1 mL, 1.2 mmol) at 0 °C. The reaction mixture was stirred for 24 h allowing it to come to room temperature. After completion of the reaction, the reaction mixture was diluted with dichloromethane (30 mL) and washed with water (20 mL x 2) and brine solution (20 mL). The organic layer was dried over anhydrous sodium sulfate and concentrated to dryness. The crude reaction mixture thus obtained was purified by column chromatography to give the title compounds as syrup.

Data for compound **36**: Yield: 94% (320 mg), $[\alpha]_D$: +35.2° (c = 1, CHCl₃, 25°C), ¹H-NMR (CDCl₃, 400 MHz): δ 6.19 (d, 1H, J = 8.4 Hz, N<u>H</u>), 4.56-4.52 (m, 1H, NH-C<u>H</u>), 4.14 (d, 2H, J = 2.4 Hz, N-C<u>H</u>₂-C), 3.74 (s, 3H, COOC<u>H</u>₃), 3.60-3.55 (m, 2H, N-C<u>H</u>₂-CH₂), 2.96 (s, 3H, SO₂C<u>H₃), 2.65-2.61 (m, 2H, N-CH₂-C<u>H</u>₂), 2.36 (t, 1H, J = 2.4 Hz, alkyne C<u>H</u>), 2.18-2.13 (m, 1H, C<u>H</u>Me₂), 0.95-0.91 (m, 6H, CH{C<u>H</u>₃}) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ 172.4, 170.3, 77.6, 74.4, 57.4, 52.3, 43.6, 38.0, 37.6, 36.3, 31.2, 19.0, 17.9 ppm; ESI-MS HRMS: Calculated for C₁₃H₂₂N₂O₅NaS ([M+Na]⁺): 341.1147; found 341.1162.</u>

Data for compound **39**: Yield: 90% (340 mg), $[\alpha]_D$: -32.0° (c = 0.2, CHCl₃), ¹H-NMR (CDCl₃, 400 MHz): δ 5.25 (d, 1H, J = 9.6 Hz, N<u>H</u>), 4.15 (d, 2H, J = 2.4 Hz, N-C<u>H</u>₂-C), 4.00-3.96 (m, 1H, NH-C<u>H</u>), 3.79-3.73 (m, 5H, COOC<u>H</u>₃ & N-C<u>H</u>₂-CH₂), 3.37-3.33 (m, 2H,N-CH₂-C<u>H</u>₂), 2.99 (s, 3H, SO₂CH₃), 2.42 (t, 1H, J = 2.4 Hz, alkyne C<u>H</u>), 2.23-2.18 (m, 1H, C<u>H</u>Me₂), 1.03 (d, 3H, J = 6.8 Hz, CH{C<u>H</u>₃}₂), 0.90 (d, 3H, J = 7.2 Hz, CH{C<u>H</u>₃}₂) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ 172.6, 77.4, 74.8, 61.4, 52.8, 52.0, 42.2, 38.1, 37.7, 31.4, 19.1, 17.3 ppm; ESI-MS HRMS:Calculated for C₁₂H₂₂N₂O₆NaS₂ ([M+Na]⁺): 377.0817; found 377.0807.

11. Synthesis of β -amide or β -sulfonamide linked glycopeptoid sulfonamide of L-valine (37 & 40): *N*-propargylated peptoid sulfonamides (36 or 39, 0.5 mmol) and per-*O*-acetylated β -D-glucopyranosyl azide (5, 0.5 mmol) were dissolved in acetone (15 mL). To the stirred reaction mixture a solution of copper sulfate (25 mg, 0.1mmol) in water (3 mL) was added followed by aqueous solution (3 mL) of sodium ascorbate (40 mg, 0.2 mmol). The reaction mixture was allowed to stir at room temperature for 24 h. After completion of the reaction as monitored by TLC, acetone was removed by applying vacuum. Ethyl acetate (50 mL) was added to the reaction mixture and washed with water (20 mL) followed by brine solution (20 mL). The

organic layer was dried over anhydrous sodium sulfate and concentrated to dryness. The crude product was purified by column chromatography by eluting with ethyl acetate and hexane.

Data for compound **37**: Yield: 95% (330 mg), m.p.: 156-158 °C, $[\alpha]_{D}$: -16.8° (c = 0.2, CHCl₃), ¹H-NMR (CDCl₃, 400 MHz): δ 7.94 (s, 1H, C<u>H</u> triazole), 6.55 (d, 1H, *J* = 8.8 Hz, N<u>H</u>), 5.86 (d, 1H, *J* = 9.2 Hz, H-1), 5.47-5.35 (m, 2H, H-2 & H-3), 5.26 (t, 1H, *J* = 9.6 Hz, H-4), 4.63-4.50 (m, 3H, NH-C<u>H</u> & C<u>H</u>₂), 4.34-4.29 (m, 1H, H-6a), 4.20-4.16 (m, 1H, H-6b), 4.05-4.01 (m, 1H, H-5), 3.72 (s, 3H, SO₂C<u>H</u>₃), 3.62-3.44 (m, 2H, N-C<u>H</u>₂-CH₂), 2.92 (s, 3H, COOC<u>H</u>₃), 2.62-2.56 (m, 2H, N-CH₂-C<u>H</u>₂), 2.17-2.12 (m, 1H, C<u>H</u>Me₂), 2.10, 2.07, 2.02, 1.90 (4s, 12H, 4 x COC<u>H</u>₃), 0.95-0.90 (m, 6H, CH{C<u>H</u>₃}₂) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ 170.7, 170.6 (x 2), 169.9, 169.4, 169.3, 144.5, 122.0, 86.0, 75.3, 72.4, 70.9, 67.7, 61.5, 57.3, 57.2, 52.1, 44.0, 43.0, 38.8, 36.1, 31.0, 20.7, 20.6, 20.5, 20.1, 19.0, 17.9 ppm; ESI-MS HRMS: Calculated for C₂₇H₄₂N₅O₁₄S ([M+H]⁺): 692.2449; found 692.2429.

Data for compound **40**: Yield: 94% (350 mg), m.p.: 152-154 °C, $[\alpha]_{D}$: -10.1° (c = 0.6, CHCl₃), ¹H-NMR (CDCl₃, 400 MHz): δ 7.97 (s, 1H, C<u>H</u> triazole), 5.87 (d, 1H, *J* = 8.8 Hz, H-1), 5.62 (d, 1H, *J* = 10.0 Hz, N<u>H</u>), 5.48-5.38 (m, 2H, H-2 & H-3), 5.26 (t, 1H, *J* = 9.6 Hz, H-4), 4.67-4.58 (ABq, 2H, C<u>H</u>₂), 4.35-4.31 (m, 1H, H-6a), 4.18-4.15 (m, 1H, H-6b), 4.05-4.02 (m, 1H, H-5), 3.99-3.96 (m, 1H, NH-C<u>H</u>), 3.78 (s, 3H, SO₂C<u>H</u>₃), 3.68-3.53 (m, 2H, N-C<u>H</u>₂-CH₂), 3.35-3.31(m, 2H, N-CH₂-C<u>H</u>₂), 2.98 (s, 3H, COOC<u>H</u>₃), 2.25-2.20 (m, 1H, C<u>H</u>Me₂), 2.10, 2.07, 2.02, 1.89 (4s, 12H, 4 x COC<u>H</u>₃), 1.03, 0.87 (2d, 6H, *J* = 6.8 Hz, CH{C<u>H</u>₃}) ppm; ¹³C-NMR (CDCl₃, 100 MHz): δ 172.7, 170.6, 169.9, 169.5, 169.4, 143.5, 122.4, 85.9, 75.3, 72.3, 70.8, 67.7, 61.5, 61.2, 52.7, 52.3, 42.4, 41.7, 39.4, 31.3, 20.8, 20.6, 20.5, 20.1, 19.2, 17.1 ppm; ESI-MS HRMS: Calculated for C₂₆H₄₁N₅O₁₅S₂Na ([M+Na]⁺): 750.1938; found 750.1937.

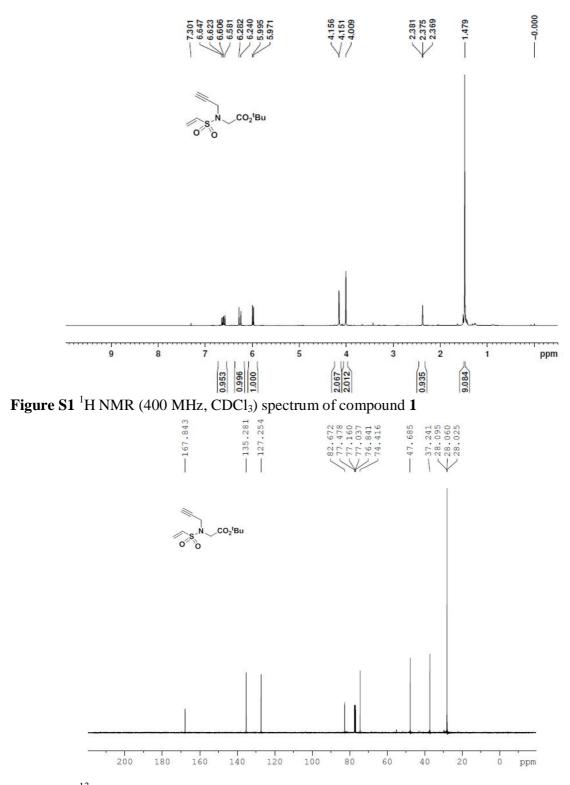
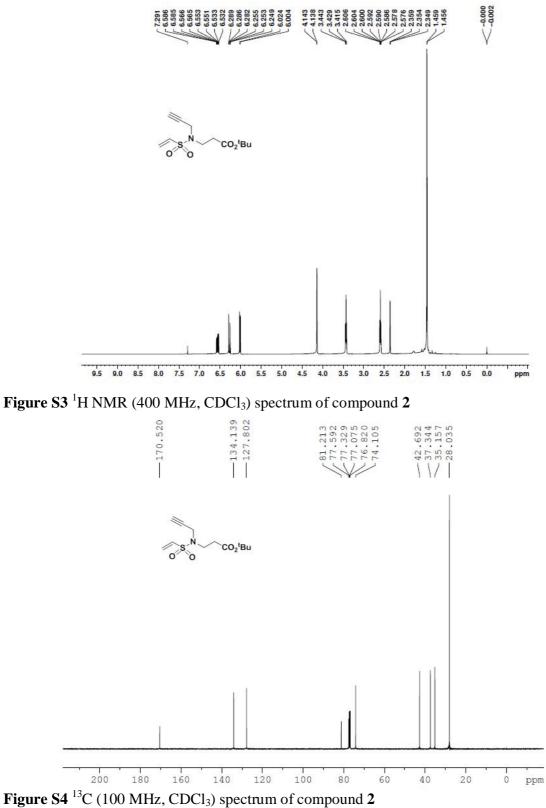



Figure S2 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 1

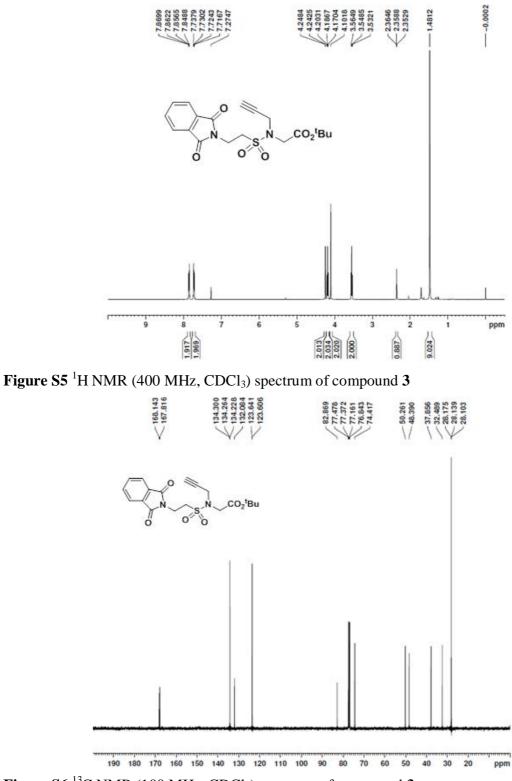


Figure S6 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 3

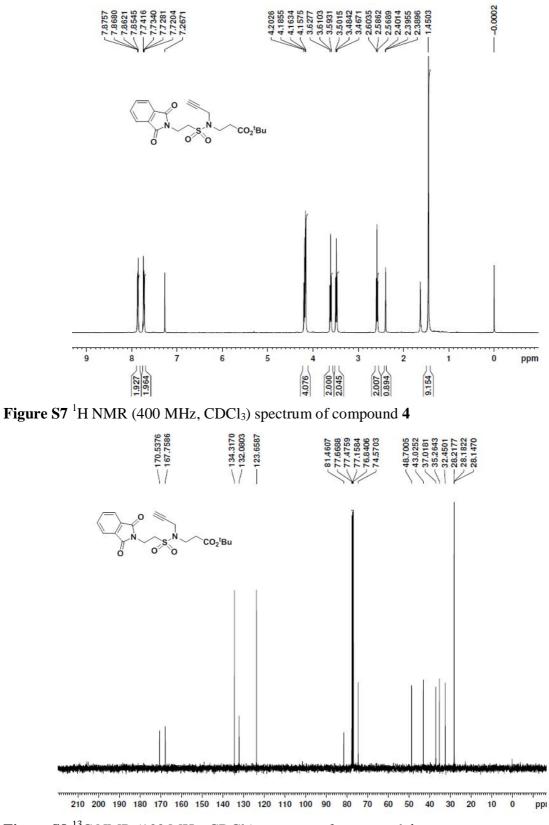


Figure S8 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 4

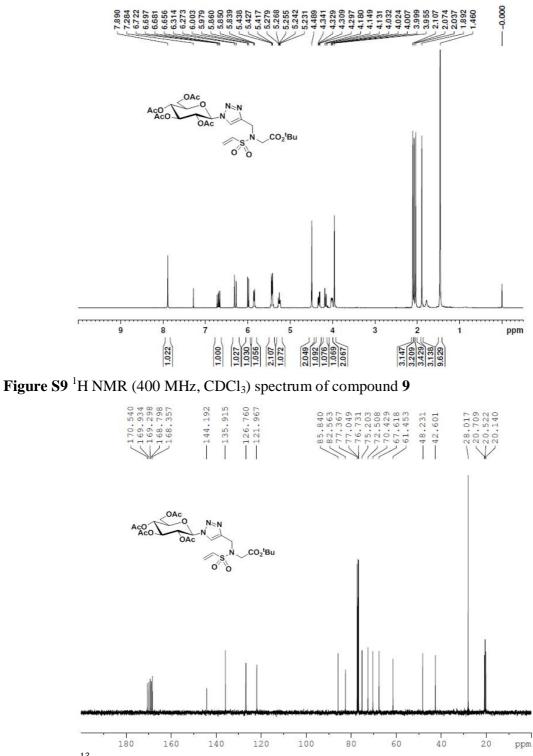


Figure S10¹³C NMR (100 MHz, CDCl₃) spectrum of compound 9

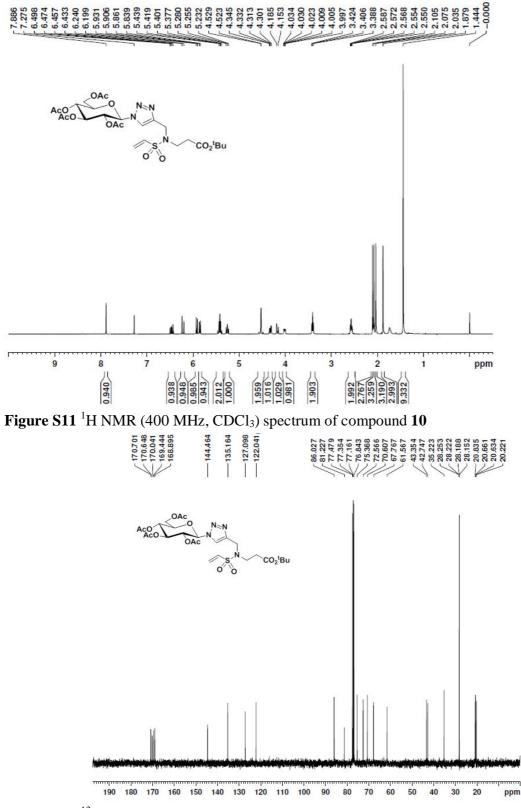


Figure S12 13 C NMR (100 MHz, CDCl₃) spectrum of compound 10

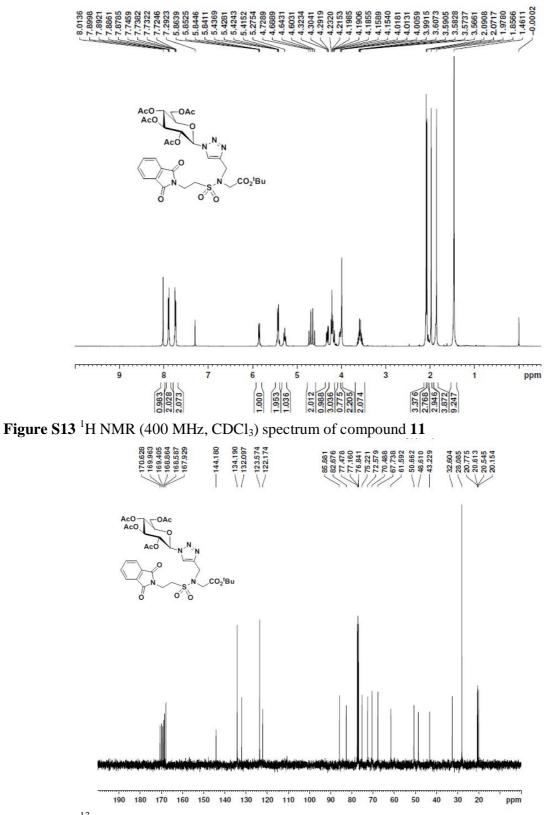
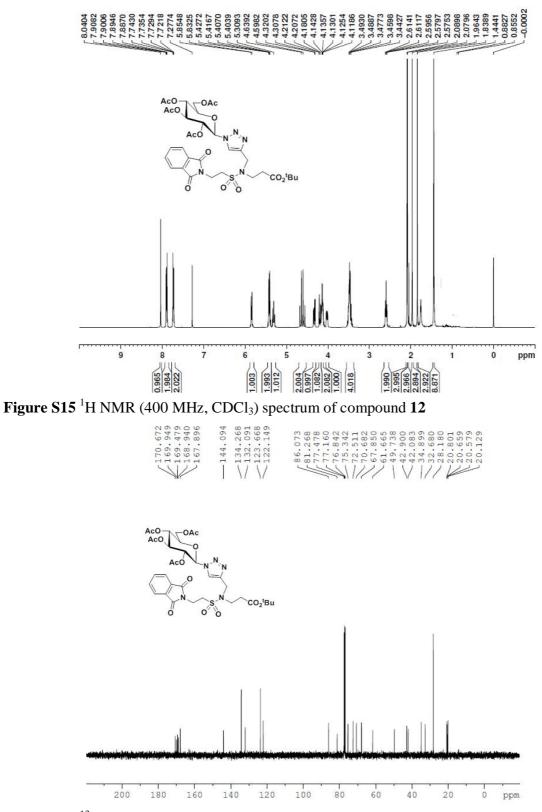
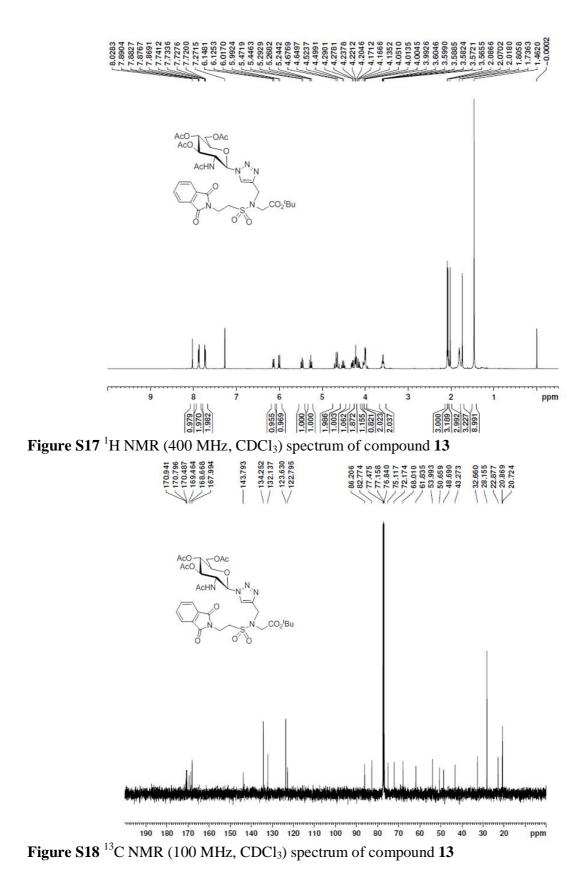
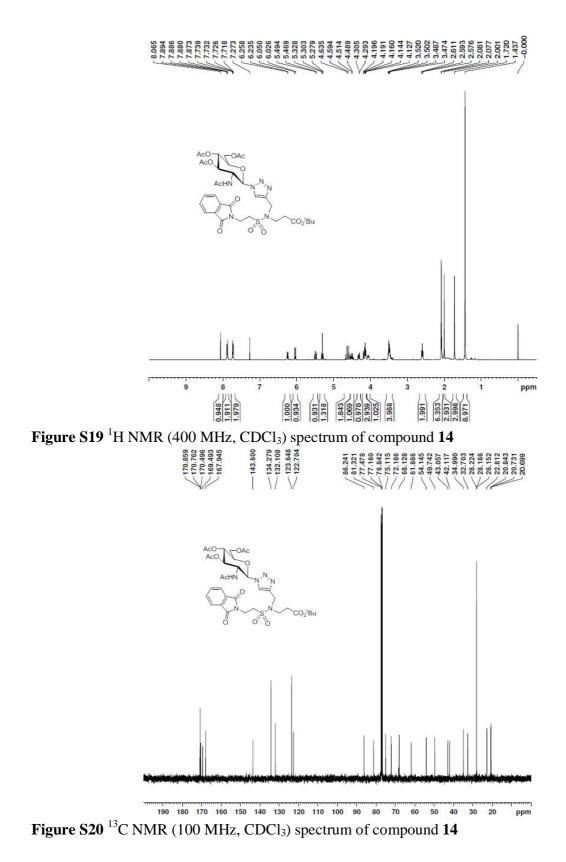
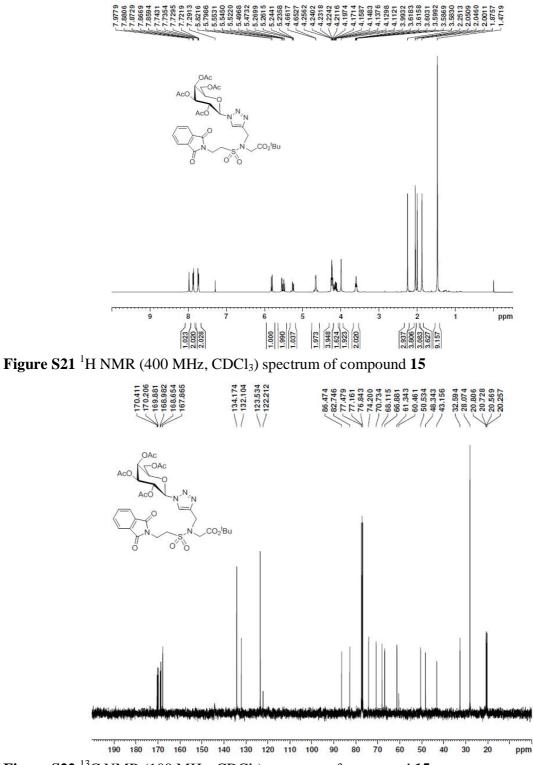
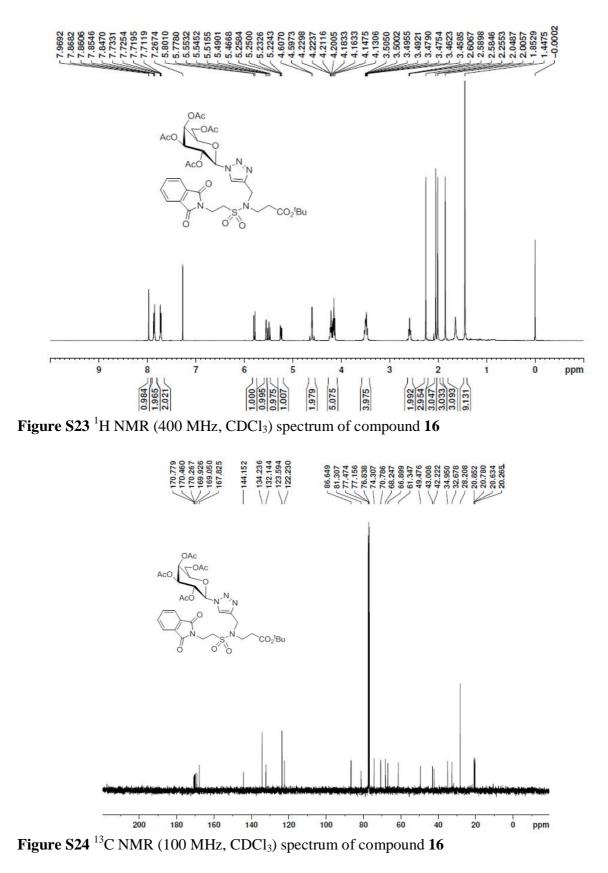
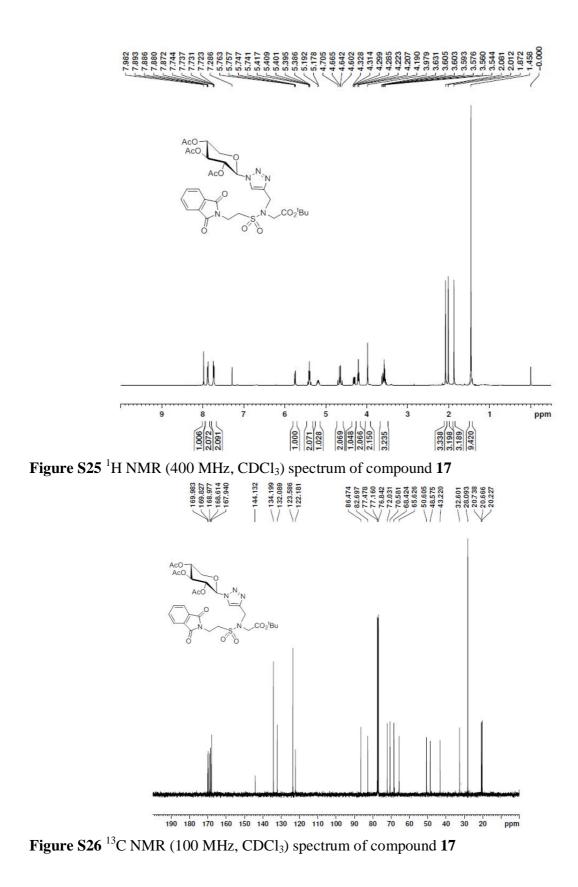


Figure S14 13 C NMR (100 MHz, CDCl₃) spectrum of compound 11


Figure S16¹³C NMR (100 MHz, CDCl₃) spectrum of compound 12


S31


S32

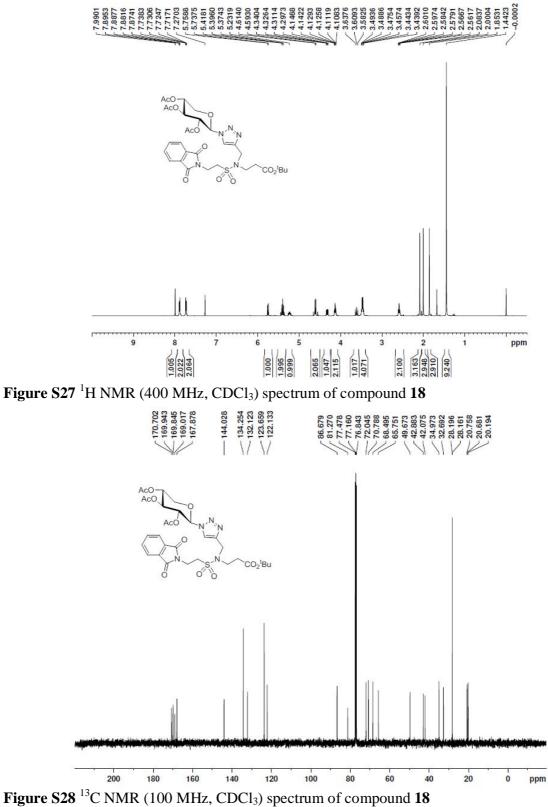


Figure S22 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound **15**

S34

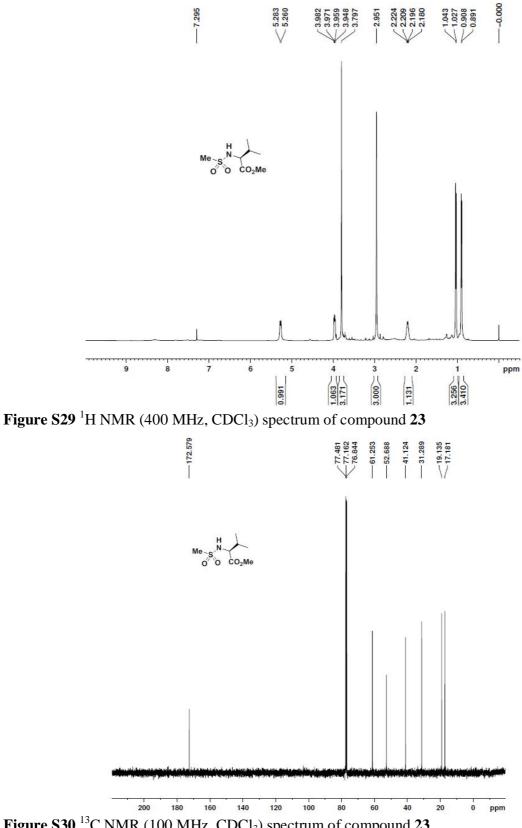
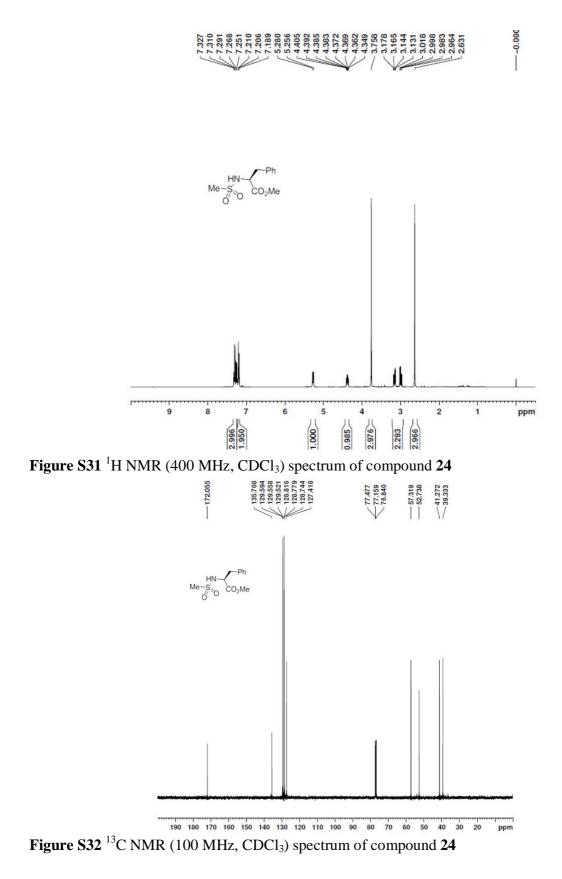
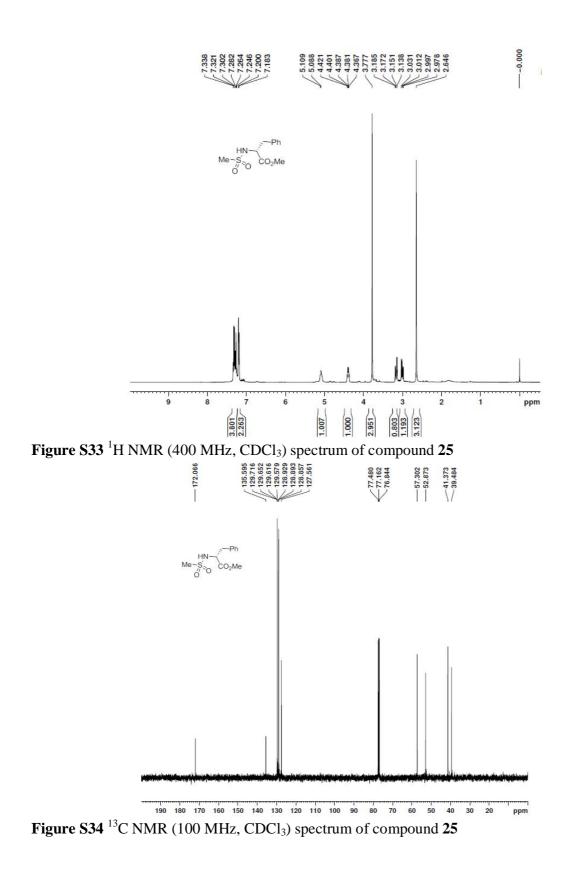




Figure S30¹³C NMR (100 MHz, CDCl₃) spectrum of compound 23

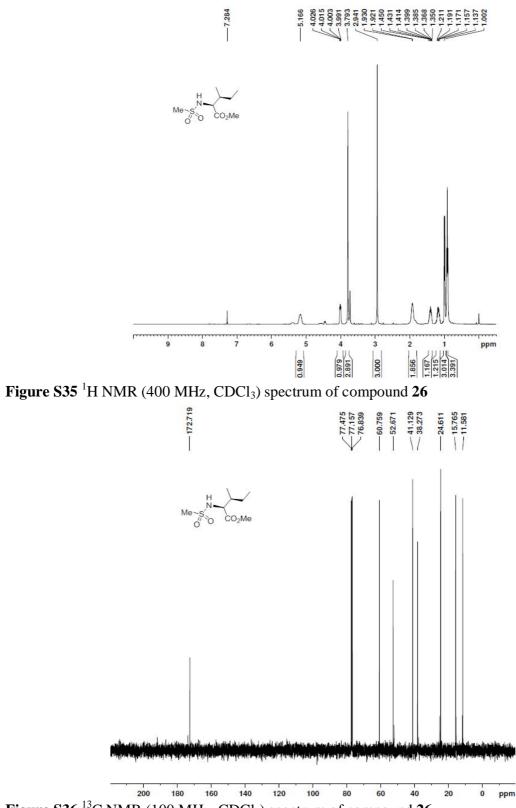


Figure S36¹³C NMR (100 MHz, CDCl₃) spectrum of compound 26

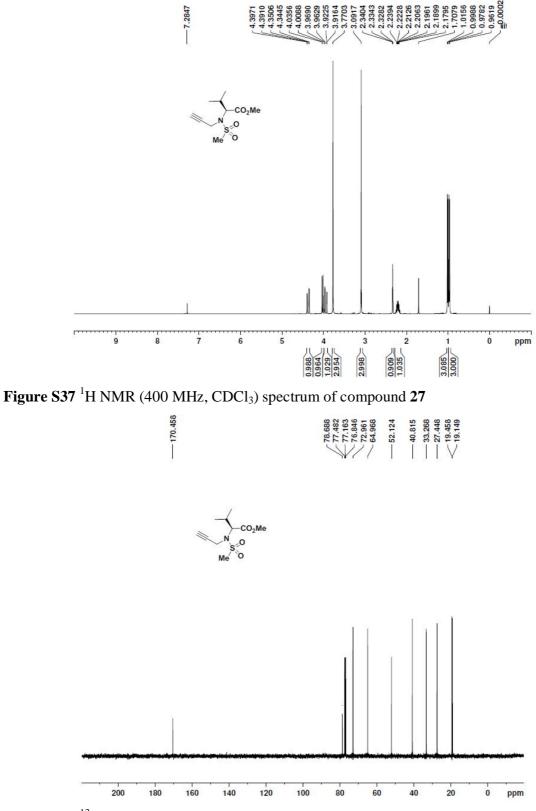


Figure S38 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 27

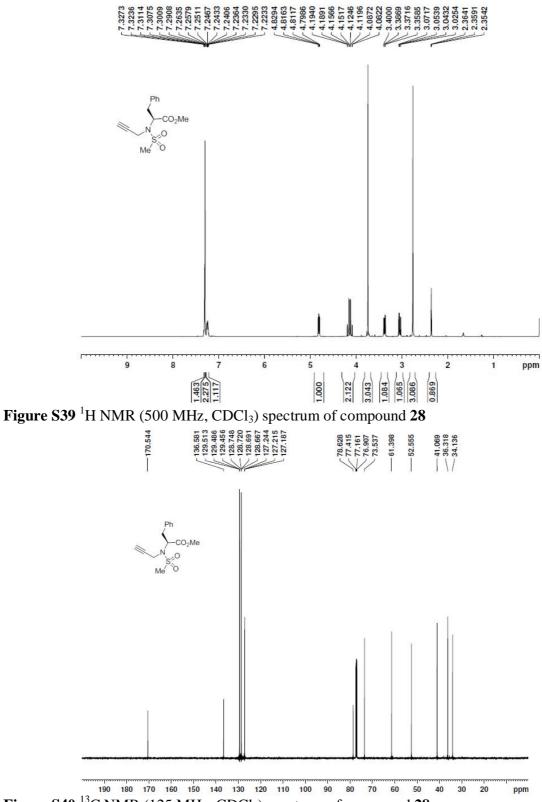
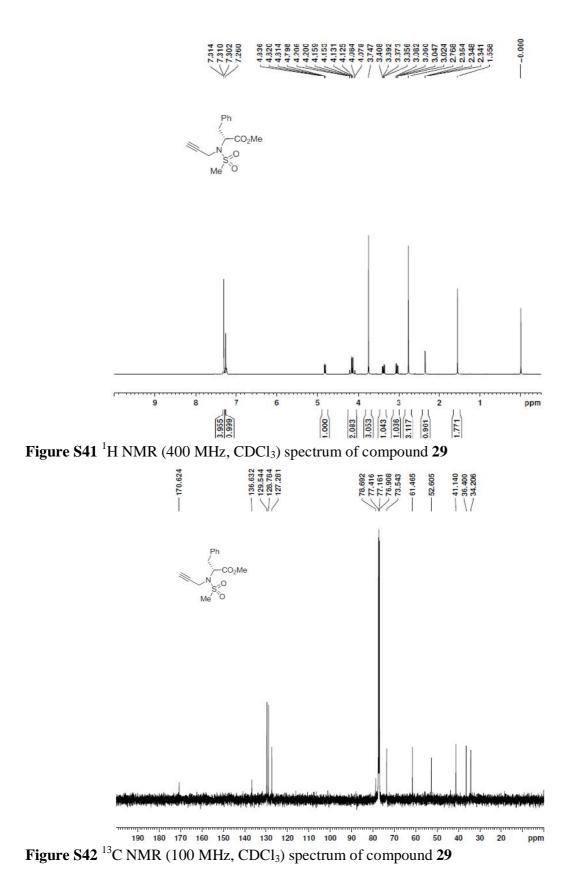



Figure S40¹³C NMR (125 MHz, CDCl₃) spectrum of compound 28

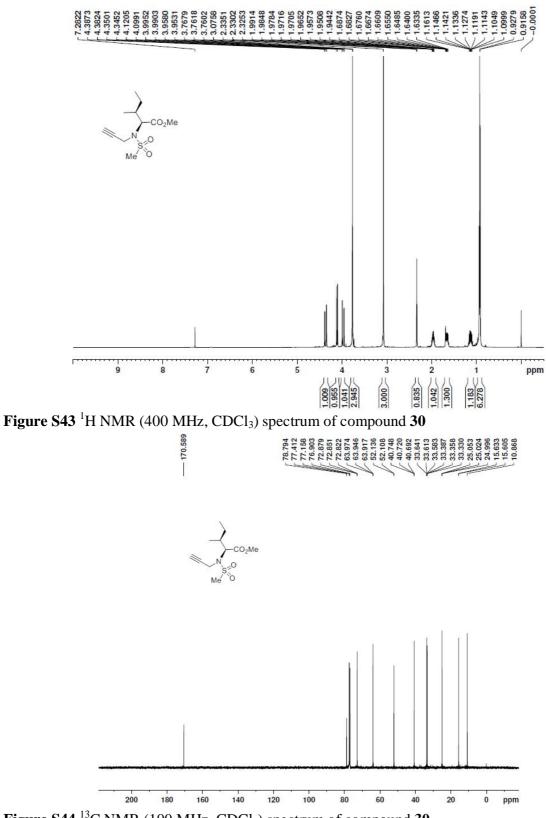


Figure S44 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 30

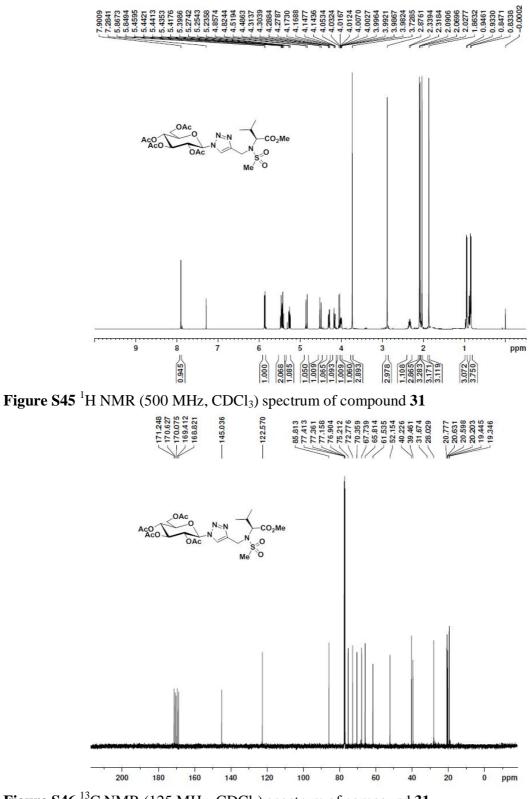


Figure S46¹³C NMR (125 MHz, CDCl₃) spectrum of compound 31

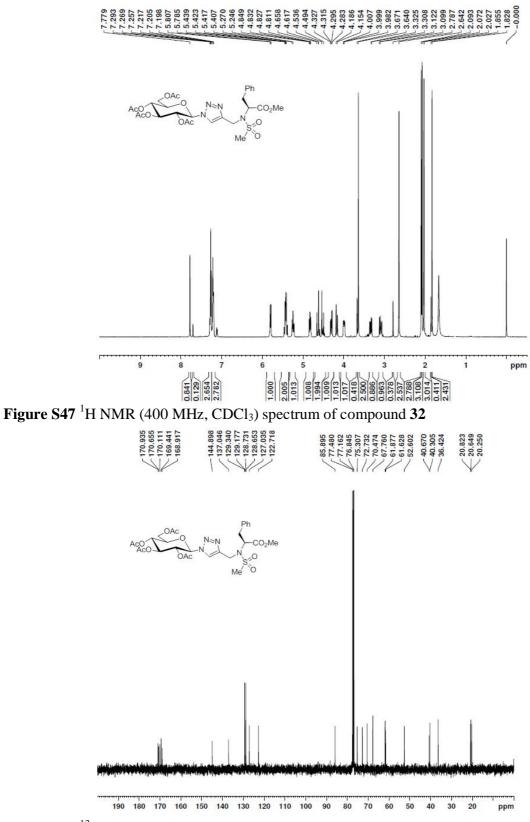
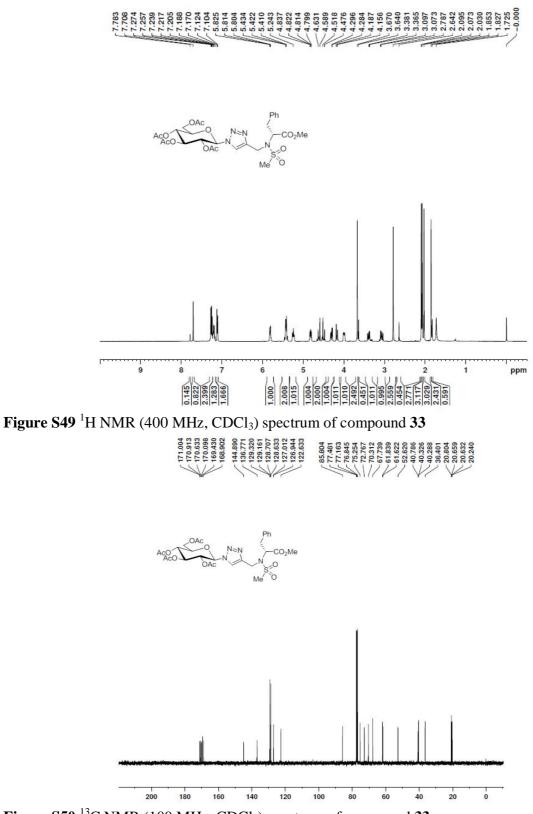
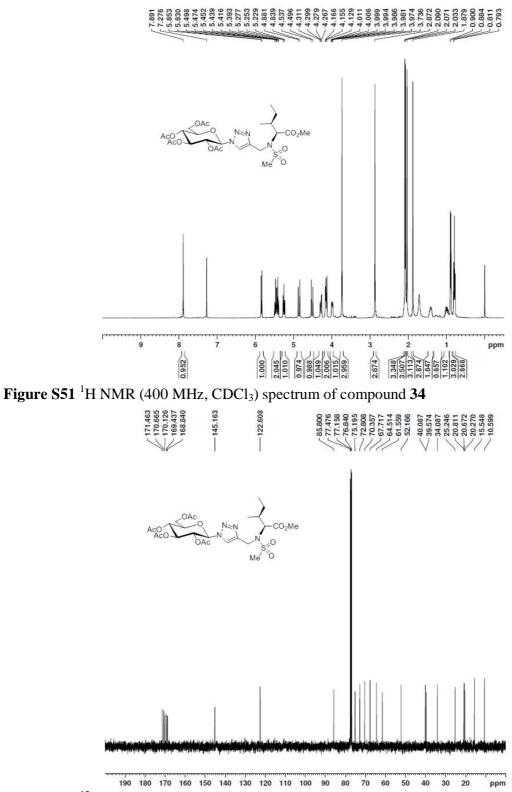
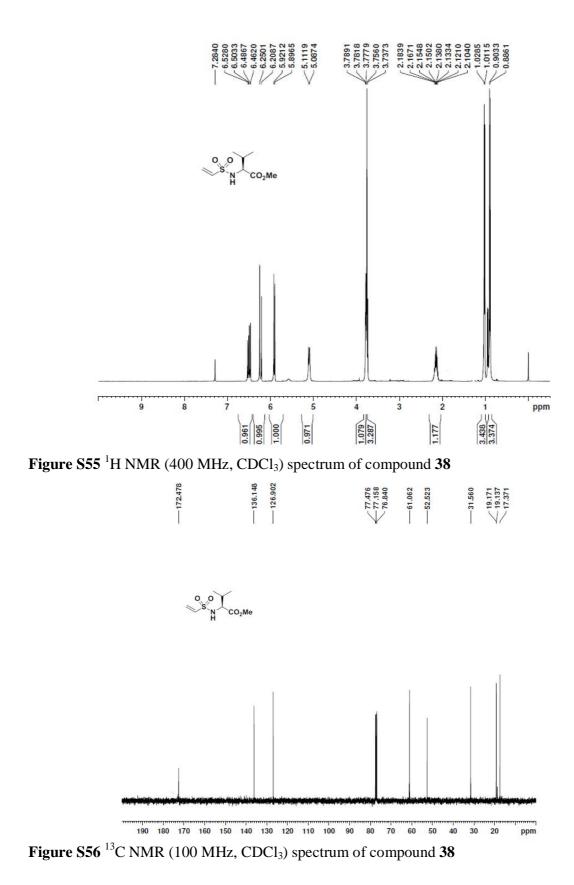


Figure S48 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 32


Figure S50 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 33

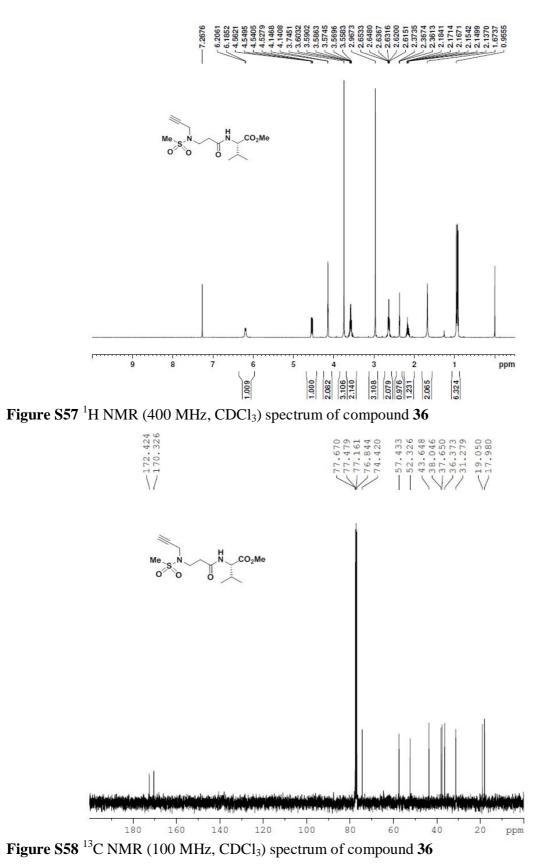

Figure S52 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound **34**

Figure S54 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 35

S50

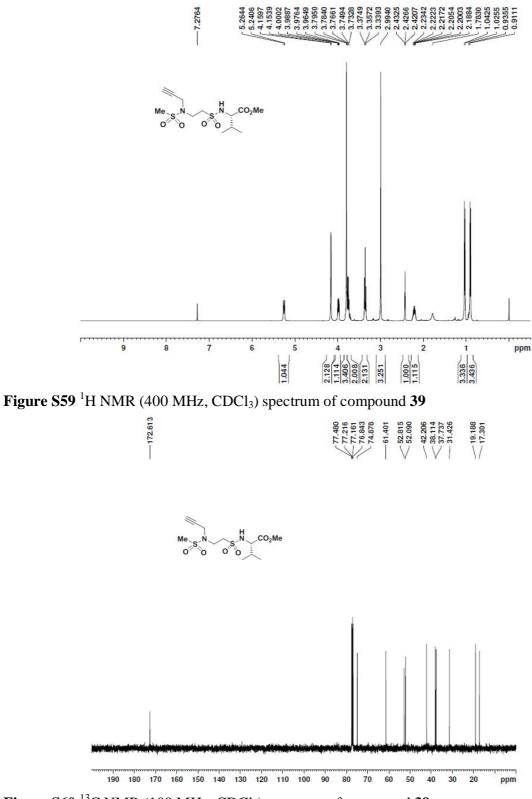


Figure S60 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 39

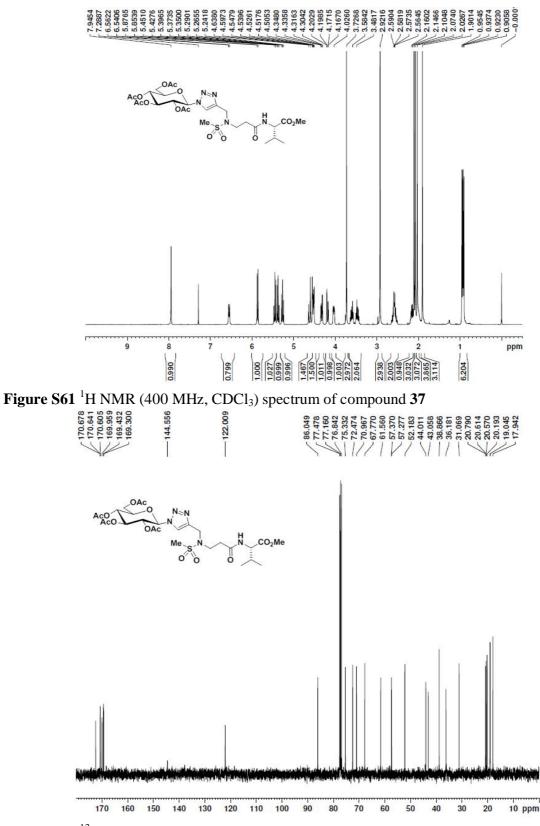


Figure S62 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 37

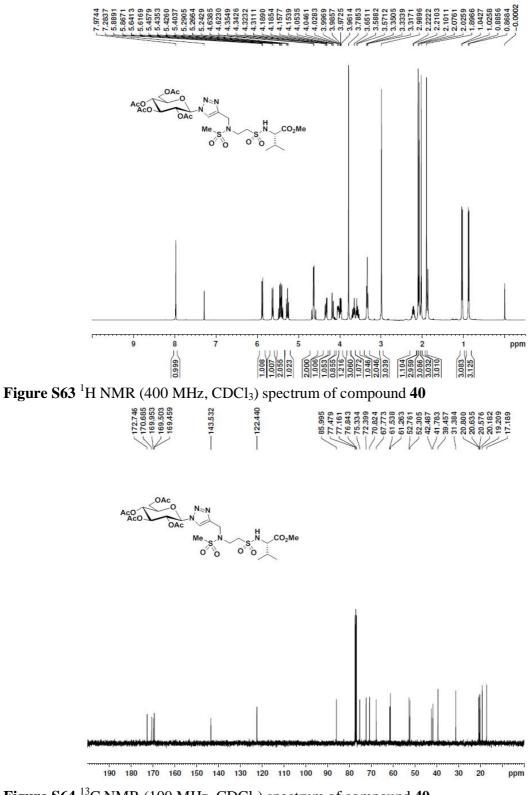


Figure S64 ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 40

X-Ray crystallographic analysis of N-propargylated sulfonamides (3, 4, 28 and 29)

Compound **3**, **4**, **28** and **29** were recrystallized from a mixture of ethyl acetate and hexane at room temperature. The relevant details of data collection and refinement are given in the **Table S1**. The structures were solved by direct methods using **SHELXS-97** and the refinement was done by full matrix least-square method using **SHELXL-97**.

	Compound 3	Compound 4	Compound 28	Compound 29
Formula	$C_{19}H_{22}N_2O_6S$	$C_{20}H_{24}N_2O_6S$	C ₁₄ H ₁₇ NO ₄ S	C ₁₄ H ₁₇ NO ₄ S
Formula weight	406.45	420.47	295.35	295.35
Crystal system space group	Triclinic, P_{-1}	Monoclinic, Cc	<i>Orthorhombic</i> , $P2_12_12_1$	<i>Orthorhombic</i> , $P2_12_12_1$
Color of crystal	Colorless	Colorless	Colorless	Colorless
Unit cell parameters Temperature of data collection Z	$a = 8.4767(8)^{\circ}$ $a = 75.243(5)^{\circ}$ $b = 8.8960(8)^{\circ}$ $\beta = 84.666(5)^{\circ}$ $c = 15.3032(14)^{\circ}$ $\gamma = 65.095(5)^{\circ}$ 298(2) K	$a = 19.9851(13)^{\circ}$ $\alpha = 90^{\circ}$ $b = 13.9008(8)^{\circ}$ $\beta = 113.968(3)^{\circ}$ $c = 8.3536(5)^{\circ}$ $\gamma = 90^{\circ}$ 298(2) K	$a = 6.53780(10)^{\circ}$ $a = 90^{\circ}$ $b = 12.7943(3)^{\circ}$ $\beta = 90^{\circ}$ $c = 17.9426(4)^{\circ}$ $\gamma = 90^{\circ}$ 298(2) K	$a = 6.5396(2)^{\circ}$ $\alpha = 90^{\circ}$ $b = 12.8007(6)^{\circ}$ $\beta = 90^{\circ}$ $c = 17.9487(9)^{\circ}$ $\gamma = 90^{\circ}$ 298(2) K
R R	R1 = 0.0998,	R1 = 0.0449,	R1 = 0.0290,	R1 = 0.0310,
	wR2 = 0.1806	wR2 = 0.0771	wR2 = 0.0775	wR2 = 0.0797
Goodness-of- fit on F^2	1.037	1.020	1.064	1.077
Refinement method	Full-matrix least- squares on F ²	Full-matrix least- squares on F ²	Full-matrix least- squares on F ²	Full-matrix least- squares on F ²

Table S1 Data collection and refinement parameters for the compound 3, 4, 28 and 29

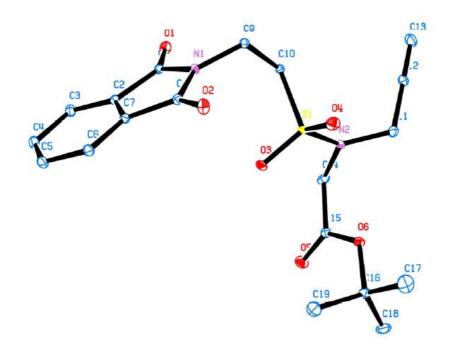


Figure S65 ORTEP representation diagram in the crystal of compound 3

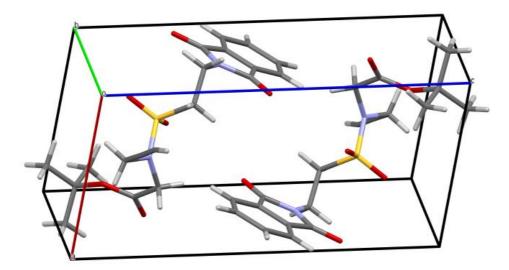


Figure S66 Unit cell packing diagram of compound 3

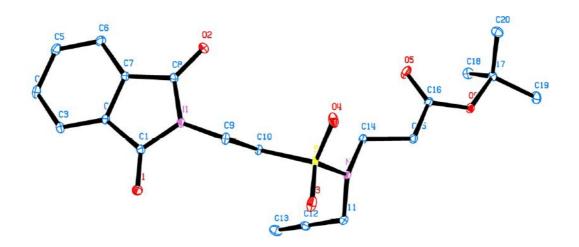


Figure S67 ORTEP representation diagram in the crystal of compound 4

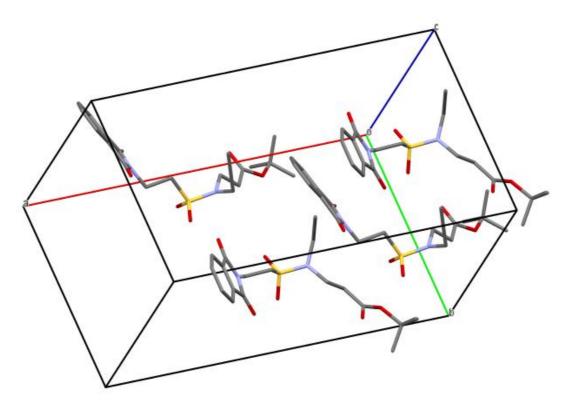


Figure S68 Unit cell packing diagram of compound 4

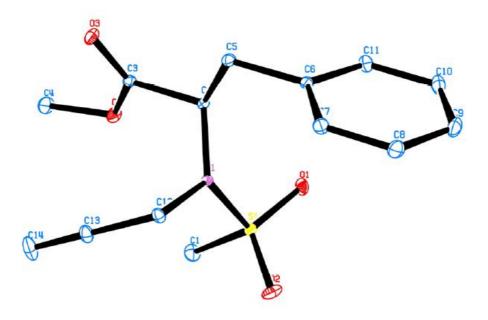


Figure S69 ORTEP representation diagram in the crystal of compound 28

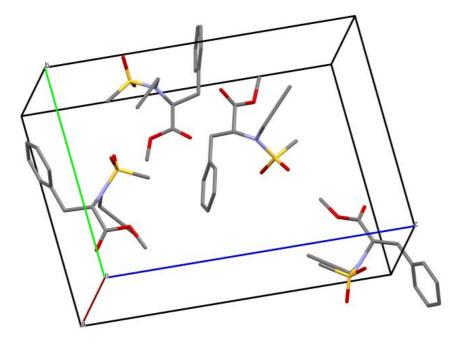


Figure S70 Unit cell packing diagram of compound 28

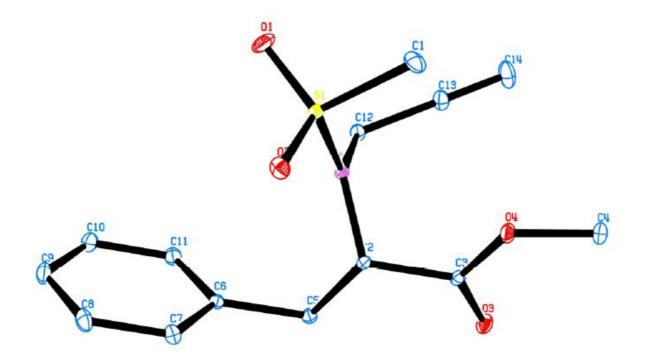


Figure S71 ORTEP representation diagram in the crystal of compound 29

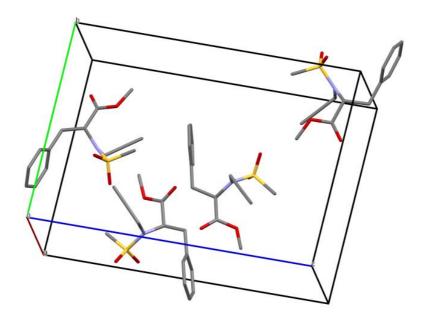


Figure S72 Unit cell packing diagram of compound 29

Torsion angle	Compound 3	Compound 4
N1-C9-C10-S1	-69.87°	172.77°
C10-S1-N2-C14	-103.60°	75.25°
O3-S1-N2-C11	-153.50°	36.58°
O4-S1-N2-C11	-22.50°	165.58°
N2-C14-C15-C16	-	-177.34°

Table S1 Comparative torsion angles in the crystal structure of compound 3 and 4

Table S2 Comparative torsion angles in the crystal structure of compound 28 and 29

Torsion angle	Compound 28	Compound 29
C1-S1-N1-C2	89.85°	-90.23°
O1-S1-N1-C12	36.49°	-165.24°
O2-S1-N1-C12	165.30°	-36.56°
C12-N1-C2-C5	-65.15°	64.80°

Table S3 Parameters of C-H...O interactions in compounds 3, 4, 28 and 29

Compound	С-НО	Distance C-O (°)	Angle C-H-O (°)
3	C4-H4O3	3.364	166.20
3	C18-H18AO4	3.459	137.99
3	С17-Н17ВО4	3.607	144.05
4	C13-H13O4	3.204	137.54
28	C14-H14O1	3.157	153.84
28	C12-H12BO2	3.219	119.72
29	C14-H14O2	3.157	152.08
29	C12-H12AO1	3.222	120.11

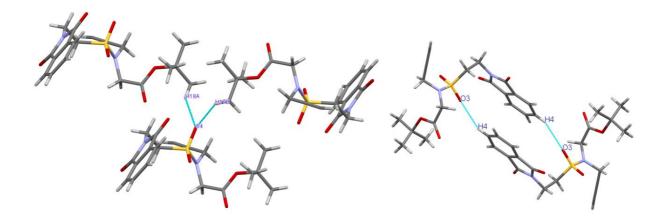


Figure S73 C-H...O interactions of the sulfonamide oxygen in compound 3

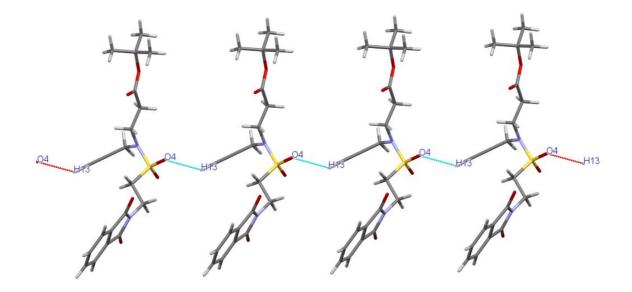


Figure S74 Infinite chain of C-H...O interactions of the sulfonamide oxygen in compound 4

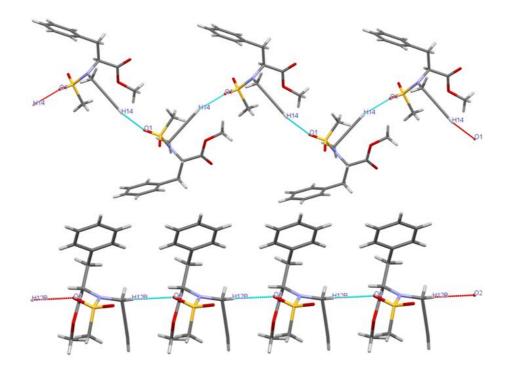


Figure S75 Infinite chain of C-H...O interactions in the crystal structure of compound 28

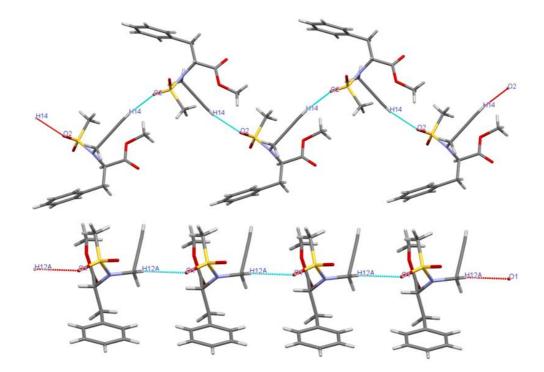


Figure S76 Infinite chain of C-H...O interactions in the crystal structure of compound 29