Supplementary Information to the Paper

Kinetics and mechanism of PPh₃ oxygenation with ³O₂ catalyzed by a 1,3,2-oxazaphosphole as flavin mimic.

István Bors, József Kaizer and Gábor Speier*

Department of Chemistry, University of Pannonia, H-8200 Veszprém, Hungary speier@almos.uni-pannon.hu

Kinetics

The method of Hiatt et al.¹ was adopted. The λ_{max} value for PPh₃ is 260 ($\epsilon = 14000$ Mcm⁻¹) nm. That of OPPh₃ is 260 nm with $\epsilon = 2200$ Mcm⁻¹. Because of the almost identical λ_{max} of PPh₃ and OPPh₃ correction have to be made according to the following:

 $A = (\varepsilon_{PPh3} [PPh_3] + \varepsilon_{OPPh3} [OPPh_3]) l$

 $[PPh_3] = [PPh_3]_0 - [OPPh_3]$

where A is absorbance measured, l the pathway of the cuvette and $[PPh_3]_0$ the starting concentration in mol dm⁻³.

1 R. Hiatt, R. J. Smythe and C. McColeman, Can. J. Chem. 1971, 49, 1707-1711.

Figure 1. The dioxygen uptake of 2,2-dihydro-2,2,2-triphenylphenanthro $[9,10-d]1,3,2\lambda^5$ -oxazaphosphole (**3**) 1.06 mmol in 10 ml acetonitrile at 20°C and 1 bar O₂ pressure.

SFigure 2. The dependence of O_2 -uptake of **3** on the solvents. Conditions: Solvent 20 mL, 1,3,2-oxazaphosphole (**3**) 0.25 mmol, 25°C, 1 bar O_2 pressure.

SFigure 3. The time course of the PPh₃ oxygenation followed by UV-Vis spectroscopy at 260 nm, 80°C, 1 bar O_2 pressure in DMF 20 mL.

SFigure 5. The dependence of the reaction rate of the catalyst concentration [3].

SFigure 7. The IR spectra of the reaction product $O=PPh_3$ using ${}^{16}O_2$ or ${}^{18}O_2$.

SFigure 10. The IR spectra of the reaction product (red) of 9,10-phenanthrenequinone oxim (green) and PPh₃. The 9,10-phenanthrenequinone imine (black) is also shown. The v(P=O) vibrations of OPPh₃ are not shown.

STable 1. Summary of the kinetic data.	
---	--

	Т	[O ₂]	[PPh ₃]	[cat]	d[PPh ₃]/dt	k _{obs}
Entry						
2	(K)	(10 ⁻³ M)	(M)	(10 ⁻² M)	$(10^{-5}s^{-1})$	$(10^{-1}M^{-2}s^{-1})$
1	353	6.86	0.2	2.00	5.44±0.18	3.97±0.13
2	353	6.86	0.3	2.00	5.67±0.56	4.13±0.41
3	353	6.86	0.4	2.00	6.14±0.15	4.47±0.11
4	353	6.86	0.5	2.00	5.56±0.22	4.05±0.16
5	353	6.86	0.6	2.00	6.03±0.12	4.39±0.09
6	353	6.86	0.7	2.00	5.28±0.07	3.85±0.05
7	353	6.86	1.0	2.00	5.50±0.20	4.01±0.14
8	353	6.86	0.5	1.00	2.58±0.07	3.77±0.10
9	353	6.86	0.5	1.50	3.44±0.10	3.35±0.10
10	353	6.86	0.5	3.00	7.47±0.75	3.63±0.37
11	353	6.86	0.5	3.50	8.92±0.22	3.71±0.09
12	353	1.37	0.5	2.00	1.31±0.19	4.77±0.70
13	353	3.42	0.5	2.00	2.39±0.11	3.49±0.16
14	353	4.10	0.5	2.00	3.78±0.19	4.61±0.23
*						3.91±0.08
15	333	6.20	0.5	2.00	2.06±0.07	1.66±0.06
16	343	6.56	0.5	2.00	3.11±0.15	2.37±0.11
17	363	7.48	0.5	2.00	7.22±0.53	4.83±0.35
18	373	7.70	0.5	2.00	9.53±0.40	6.19±0.26
19	383	7.45	0.5	2.00	10.67±0.70	7.16±0.47

*Mean value of the kinetic constant k_{obs} and its standard deviations $\sigma(k_{obs})$ were calculated as $k_{obs} = (\sum_i w_i k_i / \sum_i w_i)$ and $\sigma(k_{obs}) = (\sum_i w_i (k_i - k_2)^2 / (n-1) \sum_i w_i)^{1/2}$, where $w_i = 1/\sigma_i^2$.

Activation parameters

 $Ea = 31.61 \pm 2.86 \text{ kJ mol}^{-1}$

 $\Delta H^{\ddagger} = 28.67 \pm 2.88 \text{ kJ mol}^{-1}$

 $\Delta S^{\ddagger} = -174 \pm 8 \text{ J mol}^{-1} \text{ K}^{-1}$