Electronic Supporting Information (ESI)

Bottom-up molecular assembly of Ru(II)polypyridyl complexbased hybrid nanostructures decorated with silver nanoparticles: Ag nitrate concentration effect

Narayanasamy Vilvamani^a, Tarkeshwar Gupta^a, Rinkoo Devi Gupta^{b*}, and Satish Kumar Awasthi^{a*}

^{*a*} Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi-100 007, India. ^{*b*} Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi-110021, India.

Fig. S1 TEM of Ru(II)-Ag I hybrid misfolded sheets

Fig. S2 TEM and electron diffraction (ED) of Ru(II)-Ag III hybrid nanotubes (HNTs)

Fig. S3 TEM and ED of Ru(II)- Ag IV HNTs

Fig. S4 TEM and ED of Ru(II)- Ag V HNTs

Fig. S5 TEM and ED of Ru(II)-Ag VI wider HNTs

Fig. S6 TEM and ED of citrate capped Ag NPs with nanorod

Fig. S7 Electron X-ray diffraction spectrometry (EDS) of Ru(II)-Ag hybrid nanostructures

Ru-Ag IV

Ru(II)-Ag III

Fig. S8 SEM images of Ru(II)-Ag hybrids molar ratio = 2.0, 5.4

 $Ru(II)\text{-}Ag \ II \ nanostructure} \ (Scale \ bar \ 4 \ \mu m)$

Ru(II)-Ag V HNTs (Scale bar 200 nm)

Fig. S9 Powder X-ray diffraction (PXRD) pattern of Ru(II)-Ag HNTs

Fig. S10 UV-Vis spectra of citrate-Ag NPs

AgNO ₃	Ru(II)-	$[Ag^{+}/Ru^{2+}]$	ACN: EtOH : H ₂ O	Morphology observed
(mg/ mmol)	sensitizer (mg)	ratio	(3:1:1 v/v) (ml)	
1.8/0.01	9.6	1.04	10	Ag nanocomposites and hybrid misfolded sheets ^a
3.4/0.02	9.6	2.0	10	Nanotube cum hybrid sheets ^b
5.1/0.03	9.6	3.1	10	HNT with Ag NPs ^a
6.8/0.04	9.6	4.2	10	Long HNTs with Ag NPs ^a
8.5/0.05	9.6	5.2	10	nanotube bundles ^b
10.5/0.06	9.6	6.4	10	Wide HNTs with large Ag NPs ^a

Table S1. Summary of experiment details and morphologies (Reaction temperature = 80°C, 24h, N₂)

^a Morphology assigned based on TEM micrographs

^b Morphology assigned based on SEM micrographs

Table S2. Summary of EDS analysis

[Ag ⁺ /Ru ²⁺] ratio	Atomic	weight %	Weight %	
	Ag ⁰	Ru^{2+}	Ag^0	Ru ²⁺
1.0	42.0	0.8	55.0	0.9
3.1	33.2	22.3	41.3	26.0
4.2	18.0	0.4	52.7	1.1
5.2	17.6	0.2	46.9	0.6
6.4	23.1	0.4	56.7	0.8