Efficient hydrogenation of aromatic aldehydes to corresponding benzyl alcohols over Ni-B/MIL-101

Xiangjin Kong*, Junhai Liu

Fig.S1 (a) Ni-B/MIL-101 and (b) Ni-B/SiO₂

					2 - 5	
	surface	Pore	Pd loading ^a	Particle	Pd	Binding
Sample	$surrac (m^2/a)$	1010	(wt%)	size ^b	dispersion ^c	energy d
-	area (m²/g)	volume(cm²/g)		(nm)	(%)	(eV)
Ni-B/MIL-101	145.2	0.44	0.48	7.8 ± 2.3	12.8	335.4

Table ST The characterized results of Pu/Al ₂ O	Table S1	The char	acterized	results	of Pd/	Al ₂ O:
--	----------	----------	-----------	---------	--------	--------------------

^aLoading of palladium on the catalyst is measured by ICP-AES, ^b Particle size of palladium is derived from TEM, ^c Calculated from the H₂-chemisorption, ^d Binding energy of palladium is characterized by XPS.

Fig. S2 The TEM image and EDX spectra of Pd/Al_2O_3

Fig. S3 The XRD patterns of Pd/Al₂O₃

 Al_2O_3 phase are observed, while no visible Pd phase can be observed from the XRD patterns of Pd/Al_2O_3 due to the fact that Pd was either well dispersed or had a low content on the support.

Fig. S4 XPS spectra of Pd/Al₂O₃

 $\label{eq:Fig.S5} Fig.~S5 \quad Pd~3d~XPS~spectra~of~Pd/Al_2O_3\\ \mbox{Table S2}~The~catalytic~performance~of~the~catalysts \\$

Catalyst	Conversion/%	Selectivity / %			
Catalyst		Methylcyclohexane	Toluene	Benzyl alcohol	Other
Pd/Al ₂ O ₃	92.2	45.2	37.2	20.6	1.0
Ni-B/SiO ₂	46.0	2.5	13.5	75.4	8.6
Ni-B/MIL-101	90.0	0.0	0.0	98.5	1.5

Reaction conditions: reaction temperature (80° C), catalyst amount (1.3mmol, based on the metal species), substrate (30mmol), methanol (100 mL), hydrogenation pressure (1.5MPa), reaction time (2h).

Temperature	Conversion/%	Selectivity / %				
°C	Conversion/76	Methylcyclohexane	Toluene	Benzyl alcohol	Other	
60	74.0	0.0	0.0	96.5	3.5	
80	90.0	0.0	0.0	98.5	1.5	
100	100.0	0.0	0.0	99.4	0.6	
120	100.0	0.0	3.2	96.0	0.8	
200	100.0	0.0	15.5	82.0	2.5	
260	100.0	0.0	30.1	66.5	2.4	
280	92.0	0.0	45.1	52.6	2.3	
300	80.2	0.0	53.1	44.5	2.4	
320	55.0	0.0	64.4	33.3	2.3	
340	20.0	2.0	75.3	18.5	5.2	

Table S3 The influence of temperature on the reaction

Reaction conditions: catalyst amount (1.3mmol, based on the metal species), substrate (30mmol), methanol (100 mL), hydrogenation pressure (1.5MPa), reaction time (2h).

Thus, 100°C was chosen to be the best reaction temperature for the present reaction.

Pressure/ MPa	Conversion/% -	Selectivity / %				
		Methylcyclohexane	Toluene	Benzyl alcohol	Other	
1	96.8	0.0	0.0	98.8	1.2	
1.5	100.0	0.0	0.0	99.4	0.6	
2	100	0.8	1.2	97.5	0.5	
3	100	2.4	8.4	88.6	0.6	

Table S4 The influence of hydrogenation pressure on the reaction

Reaction conditions: reaction temperature $(100^{\circ}C)$, catalyst amount (1.3mmol, based on the metal species), substrate (30mmol), methanol (100 mL), reaction time (2h).

Thus, 1.5 MPa was chosen to be the best hydrogen pressure for the present reaction.

Reaction time	Conversion/% -	Selectivity / %				
/ h		Methylcyclohexane	Toluene	Benzyl alcohol	Other	
1	86.5	0.0	0.0	98.0	2.0	
1.5	95.6	0.0	0.0	98.8	1.2	
2	100.0	0.0	0.0	99.4	0.6	
2.5	100.0	0.4	5.6	93.5	0.5	

Table S5 The influence of reaction time on the reaction

Reaction conditions: reaction temperature $(100^{\circ}C)$, catalyst amount (1.3mmol, based on the metal species), substrate (30mmol), methanol (100 mL), hydrogenation pressure (1.5MPa).

Thus, 2 h was chosen to be the best reaction time for the present reaction.

Ni precursor	Conversion/% -	Selectivity / %				
		Methylcyclohexane	Toluene	Benzyl alcohol	Other	
NiCl	100.0	0.0	0.0	99.4	0.6	
NiNO ₃	100.0	0.0	0.0	91.6	8.4	

Table S6 The influence of Ni precursor on the reaction

Reaction conditions: reaction temperature $(100^{\circ}C)$, catalyst amount (1.3mmol, based on the metal species), Substrate (30mmol), methanol (100 mL), hydrogenation pressure (1.5MPa), reaction time (2h).

All in all, as can be found, the conversion of benzaldehyde and selectivity towards toluene reached to 100.0% and 99.3% at the optimum conditions (reaction temperature (80° C), catalyst amount (1.3mmol, based on the metal species), substrate (30mmol), methanol (100 mL), hydrogenation pressure (1.5MPa), reaction time (2h))

Fig. S6 The Ni loading of Ni-B/MIL-101 for consequent 5 runs