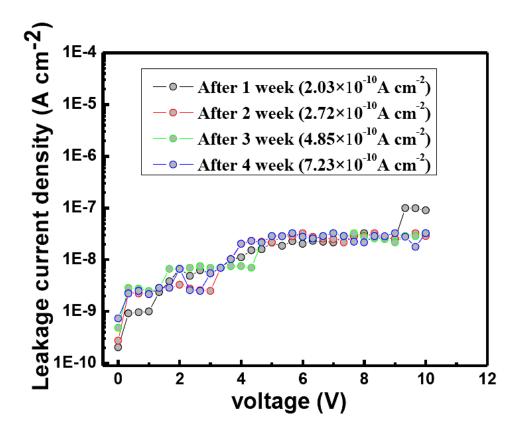
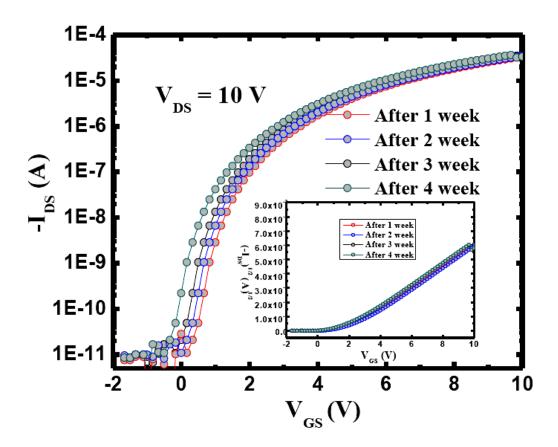
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Polystyrene-Block-Poly (methylmethacrylate) Composite Materials Film as a Gate Dielectric for Plastic Thin-Film Transistor Applications


Jagan Singh Meena^{ab}, Min-Ching Chu^a, Ranjodh Singh^a, Chung-Shu Wu^a, Umesh Chand^b, Hsin-Chiang You^c, Po-Tsun Liu^a, Han-Ping D. Shieh^a and Fu-Hsiang Ko^{a*}

^aDepartment of Materials Science and Engineering, Department of Photonics and Display Institute, National Chiao Tung University, Hsinchu 30010, ROC, Taiwan


^bDepartment of Electronics Engineering, National Chiao Tung University, Hsinchu 30010, ROC, Taiwan

^cDepartment of Electronic Engineering, National Chin–Yi University of Technology, Taichung 41170, ROC, Taiwan.

*E-mail: fhko@mail.nctu.edu.tw

Figure S1. Leakage current density measurements test for 1 day to 4 weeks for double layer PS– *b*–PMMA film (28 nm thick) as dielectric layer in MIM structured device.

Figure S2. Transfer characteristic ($I_{DS}-V_{GS}$), when V_{DS} =10 V for double layer PS-b-PMMA film (28 nm thick) as gate dielectric layer and ZnO as semiconductor active layer for day 1 to 4 weeks.