Electronic Supplementary Information

1

for

Synthesis and Characterization of Polyfluorene-based Photoelectric Materials: the Effect of Coil Segment on the Spectral Stability

Jin-Jin Li¹, Jian-Jian Wang², Yin-Ning Zhou¹, Zheng-Hong Luo^{1, 2*}

¹Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China ²Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China

* Correspondence to: Prof. Z.H. Luo; e-mail: luozh@sjtu.edu.cn

Tel.: +86-21-54745602

Fax: +86-21-54745602

Figure S1 shows the ¹H NMR spectra of PF-OH (**Figure S1-a**) and PF-Br (**Figure S1-b**). The proton signals from the hydroxyl moiety of PF-OH were clearly observed at 4.77 ppm, indicating the successful incorporation of the end-capper 4-bromobenzyl alcohol. Conversion of the end groups into bromide (PF-Br) was confirmed by the disappearance of the signal at 4.77 ppm and the appearance of peaks at 5.28 ppm.

Figure S1. ¹H NMR spectra of (a) PF-OH and (b) PF-Br in CDCl₃.

The successful synthesis of PF-OH and PF-Br also can be confirmed by the appearance of the adsorption peak at 3435 cm⁻¹ in **Figure S2-a** and 1735 cm⁻¹ in **Figure S2-b**, which were assigned to the stretching vibrations of the –OH group in the end-capper 4-bromobenzyl alcohol and the C=O group in 2-bromoisobutyryl bromide, respectively.

Figure S2. FTIR spectra of (a) PF-OH and (b) PF-Br.