Electronic supplementary information

Cr(III) adsorption by fluorinated activated boron nitride: a combined experimental and theoretical investigation

Jie Li, Peng Jin* and Chengchun Tang*

School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China. Fax: +86-22-60202660; Tel: +86-22-60202660; E-mail: china.peng.jin@gmail.com.(P. J.); tangcc@hebut.edu.cn (C. T.)

Fig. S1 Pore size distributions of ABN (black) and F-ABN (red).

Fig. S2 Zeta potential vs. pH value of F-ABN.

Kinetic model

The pseudo-first-order and pseudo-second-order models are displayed in Eqs. S1 and S2, respectively:

$$\ln(q_e - q_t) = \ln q_e - k_l t \tag{S1}$$

$$t/q_t = 1/k_2 q_e^2 + t/q_e$$
(S2)

where q_e and q_t (mg/g) are the amounts of Cr(III) adsorbed at equilibrium and time t, respectively; k_1 (min⁻¹) and k_2 (g mg⁻¹ min⁻¹) are the rate constants of the pseudo-first-order and pseudo-second-order adsorptions, respectively.

 Table S1 Comparison between the adsorption kinetic data of the pseudo-first-order and pseudo-second-order models.

adsorbent	pseudo-first-order		pseudo-second-order	
	$k_l(\min^{-1}) q_e (\operatorname{mg g}^{-1})$	¹) R ²	$k_2(g \operatorname{mg min}^{-1})$	$q_e (\mathrm{mg \ g^{-1}}) \mathrm{R^2}$
F-ABN	1.125×10 ⁻⁵ 153	0.721	1.61×10 ⁻⁵	207.79 0.992

Fig. S3 The fitting of Cr(III) adsorption by F-ABN using the pseudo-second-order kinetic model (initial concentration of Cr(III): 52 mg/L; pH: 5.5; adsorbent: 50 mg; T: 30 °C).

Thermodynamic model

Using the values of Langmuir constant b (3.45) and Eqs. S3 - S5, one can calculate the variations of apparent enthalpy (Δ H), apparent free energy (Δ G), and apparent entropy (Δ S) of chromium sorption on F-ABN:

$$\ln b = -(\Delta H/RT) + \text{constant}$$
(S3)

$$\Delta G = -RT \ln b \tag{S4}$$

$$\Delta S = (\Delta H - \Delta G)/T \tag{S5}$$

where R is the gas law constant and T is the absolute temperature.

	11		/ I
T (K)	∆G (kJ/mol)	∆H (kJ/mol)	$\Delta S (J/mol K)$
283	-0.71	-0.68	0.106
293	-2.51	-2.49	0.068
303	-3.16	-3.15	0.033

Table S2 The apparent thermodynamic parameters of Cr(III) adsorption on F-ABN.

Fig. S4 Spin density distributions of the (a) $BNF_{Bv} \, and$ (b) $BNF_{Nv}.$