Supplementary Material

Pd-doped SiO₂ nanoparticles: An efficient recyclable catalyst for Suzuki, Heck and Sonogashira reactions

Deepali A. Kotadia,^a Urmila H. Patel,^b Sahaj Gandhi^b, Saurabh S. Soni^{*,a}

^a Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar 388120, Gujarat, INDIA

^b Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388120, Gujarat, INDIA

*Author to whom all correspondence should be address (email: soni_b21@yahoo.co.in) Telephone: +91-2692-226857-Ext.216, Tele Fax: +91-2692 236475

Figure S1 Wide angle powder XRD pattern of Pd/SiO₂

Figure S2 Reusability Graph of Pd/SiO₂ for Suzuki Coupling reaction of *p*-bromoacetophenone with phenyl boronic acid

Figure S3 TEM images of Pd/SiO₂ mesoporous materials (magnification of Fig. 3)

Figure S4 TEM micrographs of reused Pd doped silica mesoporous materials

Entry	¹ H NMR Spectral data's
Figure S5	¹ H NMR (CDCl ₃ δ/ppm): 2.19 (3H, Singlet, -CH ₃), 7.35–7.47 (2H, Multiplet, -CH), 7.51–7.59 (2H, Multiplet, -CH), 7.61-7.65 (4H, Multiplet, -CH), 7.77 (1H, Singlet, -CH), 8.28 (1H, Singlet, -NH) (Table 3 Entry 1)
Figure S6	¹ H NMR (CDCl ₃ , δ/ppm): 7.41-7.49 (1H, Triplet, -C <i>H</i>), 7.51-7.55 (4H, Multiplet, - C <i>H</i>), 7.61-7.63 (1H, Triplet, -C <i>H</i>), 7.65-7.69 (2H, Triplet, -C <i>H</i>), 7.72–7.74 (2H, Triplet, -C <i>H</i>), 7.85-7.87 (2H, Doublet, -C <i>H</i>), 7.91–7.93 (2H, Doublet, -C <i>H</i>) (Table 3 Entry 3)
Figure S7	¹ H NMR (CDCl ₃ , δ/ppm): 7.53-7.58 (2H, Triplet, -C <i>H</i>), 7.78-7.80 (2H, Multiplet, - C <i>H</i>), 7.88-7.99 (5H, Multiplet, -C <i>H</i>), 8.01-8.13 (2H, Triplet, -C <i>H</i>), 10.11 (1H, Singlet, -C <i>H</i> O) (Table 3 Entry 5)
Figure S8	¹ H NMR (CDCl ₃ , δ/ppm): 1.45 (9H, Singlet, -(CH ₃) ₃), 6.44 (1H, Doublet, =CH), 7.57-7.64 (2H, Triplet, -CH), 7.80 (1H, Doublet, =CH), 8.07-8.10 (2H, Triplet, - CH), 11.04 (1H, Singlet, -OH) (Table 5 Entry 3)
Figure S9	¹ H NMR (CDCl ₃ , δ/ppm): 1.49 (9H, Singlet, -(CH ₃) ₃), 3.78 (3H, Singlet, -OCH ₃), 6.51 (1H, Doublet, =CH), 7.63-7.68 (2H, Triplet, -CH), 7.81 (1H, Doublet, =CH), 8.08-8.14 (2H, Triplet, -CH) (Table 5 Entry 6)
Figure S10	¹ H NMR (CDCl ₃ , δ/ppm): 6.90 (2H, Doublet, -C <i>H</i> =C <i>H</i>), 7.38-7.59 (4H, Triplet, - C <i>H</i>), 7.71-7.79 (2H, Triplet, -C <i>H</i>), 7.80-7.93 (4H, Triplet, -C <i>H</i>) (Table 5 Entry 9)
Figure S11	¹ H NMR (CDCl ₃ , δ/ppm): 2.62 (3H, Singlet, -OCH ₃), 6.90-7.28 (3H, Triplet, -CH), 7.31-7.48 (2H, Triplet, -CH), 7.60-7.64 (2H, Triplet, -CH), 7.82-7.84 (2H, Triplet, -CH) (Table 6 Entry 1)
Figure S12	¹ H NMR (CDCl ₃ , δ/ppm): 7.43-7.54 (3H, Triplet, -C <i>H</i>), 7.56-7.63 (4H, Triplet, - C <i>H</i>), 7.65-7.81 (2H, Triplet, -C <i>H</i>), 9.97 (1H, Singlet, -C <i>H</i> O)(Table 6 Entry 4)
Figure S13	¹ H NMR (CDCl ₃ , δ/ppm): 7.19-7.21 (3H, Triplet, -C <i>H</i>), 7.24-7.26 (2H, Triplet, - C <i>H</i>), 7.55-7.63 (2H, Triplet, -C <i>H</i>), 7.70-7.79 (2H, Triplet, -C <i>H</i>)(Table 6 Entry 6)

Suzuki Coupling products

Figure S5 1H-NMR of N-(biphenyl-4-yl)acetamide

Figure S6 ¹H-NMR of 4-(naphthalen-2-yl)benzaldehyde

Figure S7 ¹H-NMR of 4-(naphthalen-2-yl)benzaldehyde

Figure S8 ¹H-NMR of (E)-4-(3-tert-butoxy-3-oxoprop-1-enyl)benzoic acid

Figure S9 ¹H-NMR of (E)-tert-butyl 3-(4-methoxyphenyl)acrylates

Figure S10 ¹H-NMR of (E)-1,2-diphenylethene

Sonogashira Coupling products

Figure S11 ¹H-NMR of 1-(4-(phenylethynyl)phenyl)ethanone

Figure S12 ¹H-NMR of 4-(phenylethynyl)benzaldehyde

Figure S13 ¹H-NMR of 4-(phenylethynyl)benzonitrile