Chemical Colorimetric Square Wave and its Derived Logic Gates Based on Tunable Growth of Plasmonic Gold Nanoparticles

Yanjuan Zhou, Kaiyu He, Shengquan Liu, Yong Li, Zhou Nie*, Yan Huang, Shouzhuo Yao

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry

and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China

Corresponding address: <u>niezhou.hnu@gmail.com</u>

Figure S1. (A) The UV-Vis spectra of AuNPs solutions with different H_2O_2 concentrations. (B) Variation of the values of $A_{550/650}$ with time after adding different concentrations of H_2O_2 to the gold precursor solution.

Figure S2. The TEM measurements performed to investigate the state of AuNPs obtained with different concentrations of H_2O_2 . TEM images of AuNPs grown in the presence of (A) 60 μ M H_2O_2 and (B) 80 μ M H_2O_2 .

Figure S3. DLS analysis of AuNPs grown in the presence of HAuCl₄ (0.1 mM), 60 μ M H₂O₂ or 80 μ M H₂O₂.

Figure S4. The TEM images of AuNPs obtained with or without AgNO₃. The reaction conditions: (A) H_2O_2 (60 μ M) and $HAuCl_4$ (0.1 mM) in MES buffer (1 mM, pH 6.5); (B) H_2O_2 (60 μ M), HAuCl₄ (0.1 mM) and AgNO₃ (1 μ M) in MES buffer (1 mM, pH 6.5).

Figure S5. Variation of $A_{550/650}$ of solutions with time obtained under different reaction conditions: AgNO₃: AgNO₃ (1 µM), H₂O₂ (60 µM) and HAuCl₄ (0.1 mM); Blank: the control without AgNO₃; C1: the control without H₂O₂; C2: the control without HAuCl₄; NaNO₃: the control using NaNO₃ (1 µM) instead of AgNO₃.

Figure S6. The UV-Vis spectra of AuNPs with 60 μ M H₂O₂ and different concentrations of AgNO₃ (0 ~5 μ M): (A) the first OFF interval of the Ag⁺-CCSW (0 ~ 100 nM); (B) ON interval of the Ag⁺-CCSW (100 nM ~ 1 μ M); (C) the second OFF interval of the Ag⁺-CCSW (1 μ M ~ 5 μ M).

Figure S7. DLS analysis of AuNPs grown in the presence of $HAuCl_4$ (0.1 mM), 60 μ M H₂O₂ and different concentrations of AgNO_{3.}

Figure S8. EDX analysis of AuNPs grown in the presence of different concentrations of AgNO₃ (A: 0.075 μ M, B: 1 μ M and C: 5 μ M) with HAuCl₄ (0.1 mM) and H₂O₂ (60 μ M).

Figure S9. The variation of $A_{550/650}$ of solutions with time obtained under different concentrations of Ag⁺. The AuNPs formed under the following conditions: H₂O₂ (60 μ M), HAuCl₄ (0.1 mM) and different concentrations of Ag⁺ (0 ~ 5 μ M) in MES buffer (50 mM, pH 6.5). Only the solutions with the concentration of AgNO₃ located in the ON interval of the Ag⁺-CCSW (100 ~ 1000 nM) would lead to the A_{550/650} surpassing 2, otherwise the A_{550/650} below 2 was obtained with Ag⁺ concentration within the first OFF interval (0 ~ 100 nM) or the second OFF interval (1 μ M ~ 5 μ M).

Figure S10. The selectivity of the metal ions for assisting the growth of AuNPs and constructing the CCSW. (A) Different color and (B) the absorption ratio value $(A_{550/650})$ of AuNPs solution obtained with 60 μ M H₂O₂ and in the presence of 1 μ M Ag⁺ and 1 μ M other metal ions, respectively.

Figure S11. The UV-Vis spectra of AuNPs with 60 μ M H₂O₂ and 1 μ M of AgNO₃ in MES buffer with different pH (pH 3.2 ~ 8.5): (A) the first OFF interval of the pH-CCSW (3.2 ~ 5.0); (B) ON interval of the pH-CCSW (5.5 ~ 6.5); (C) the second OFF interval of the pH-CCSW (7.0 ~ 8.5).

Figure S12. The variation of $A_{550/650}$ of solutions with time obtained at different pH. The AuNPs formed under the following condition: H_2O_2 (60 µM), HAuCl₄ (0.1 mM) and Ag⁺ (1 µM) in MES buffer with different pH (50 mM, pH 3.2 ~ 8.5). Only the solutions with the pH located in the ON interval of pH-CCSW (pH 5.5 ~ 6.5) would lead to the $A_{550/650}$ surpassing 2, otherwise the $A_{550/650}$ below 2 was obtained with the pH within the first OFF interval (3.2 ~ 5.0) or the second OFF interval (7.0 ~ 8.5).

Figure S13. DLS analysis of AuNPs grown in the presence of HAuCl₄ (0.1 mM), 60

 $\mu M \ H_2 O_2$ in MES buffer with different pH values.