Electronic Supplementary Information

Synthesis of ultrafine amorphous PtP nanoparticles and the effect of PtP crystallinity on methanol oxidation

Yanjiao Ma¹, Hui Wang¹, Hao Li², Julian Key³, Shan Ji^{3,**}, Rongfang Wang^{1,*}

Figure S1. The CO stripping voltammetry of PtP-100/C in nitrogen-saturated 0.5 mol L^{-1} H₂SO₄ solution.

Fig. S1 shows the CO stripping voltammetries of PtP-100/C measured in nitrogen-saturated 0.5 mol L⁻¹ H₂SO₄ solution. The onset potential of CO oxidation was ca. 0.567 V, higher than that of PtPa/C (0.560 V) and lower than that of PtP-200/C (0.588 V). The ECSACO was 40.6 m² g_{Pt}⁻¹, samller than that of PtP_a/C (41.5 m² g_{Pt}⁻¹) and larger than that of PtP-200/C (40.1 m² g_{Pt}⁻¹).

R.F. Wang (*): wrf38745779@126.com,Tel./fax: +86-931-7971533

S. Ji (**): sji@uwc.ac.za, Tel./fax: +27-21-9599316

Figure S2. (a and b) Cyclic voltammograms of PtP-100/C normalized by the Pt loading and $ECSA_{CO}$ respectively, at 50 mV s⁻¹ in 0.5 mol L⁻¹ H₂SO₄ + 0.5 mol L⁻¹ CH₃OH solution.

Fig. 9 shows the electrocatalytic methanol oxidation activity of PtP-100/C catalysts evaluated by CVs. The current was normalized to Pt loading and $ECSA_{CO}$, respectively. The current densities of oxidation peaks on PtP-100/C electrode reached 265.8 mA g_{Pt}^{-1} and 0.658 mA cm⁻² respectively. Compared to

those of PtP_a/C (301.8 mA g_{Pt}^{-1} and 0.726 mA cm⁻²) and PtP-200/C (245.8 mA g_{Pt}^{-1} and 0.612 mA cm⁻²), the catalytic activity of PtP-100/C was poorer than that of PtP_a/C and better than that of PtP-200/C.

Figure S3. The chronoamperometry curves of PtP-100/C normalized to Pt loading (a) and $ECSA_{CO}$ (a) in 0.5 mol L⁻¹ H₂SO₄ + 0.5 mol L⁻¹ CH₃OH at a constant potential of 0.6 V.

Fig. S3 shows the chronoamperometry curves normalized to the Pt loading and $ECSA_{CO}$ for the four catalysts in 0.5 mol L⁻¹ H₂SO₄ + 0.5 mol L⁻¹ CH₃OH at a constant potential of 0.6 V. Fig. 10 shows the potentiostatic current was 67.5 mA g_{Pt} ⁻¹ and 0.166 mA cm⁻² at 1000th s. respectively. As expected, these values are larger than that on PtP-200/C and lower that on PtPa/C at 1000th s.