Pd-Catalyzed Tandem Homocoupling-Aldol-Dehydration of ortho-Acylcarbonylphenyl Iodides

Meiqin Fu,[†] Dongen Lin,[†] Yuanfu Deng,[†] Xiao-Qi Zhang,[§] Yanchu Liu,[†] Chunsong Lai,[†] and Wei Zeng^{*,†}

[†] School of Chemistry and Chemical Engineering , South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, China, 510641 [§] School of Pharmaceutical Sciences, Jinan University, Guangzhou 510632, China zengwei@scut.edu.cn

Supporting Information

Table of Contents

1.	General experimental information
1.1	General methods
1.2	Table S1. The effect of bases on the Pd(II)-catalyzed tandem homocoupling-aldol-dehydration
of	1b2
1.3	Table S2. The effect of temperature on the Pd(II)-catalyzed tandem homocoupling-aldol-
del	nydration of 1b
1.4	Table S3. Catalyst screening for this transformation
1.5	Table S4. The effect of solvents on the Pd(II)-catalyzed tandem homocoupling-aldol-
del	nydration of 1b
1.6	Table S5. Ligand screening on tandem homocoupling-aldol-dehydration of 1b 4
1.7	Table S6. The effect of halogen atoms on the Pd(II)-catalyzed tandem homocoupling-aldol-
del	nydration5
1.8	Table S7. Ligand screening on tandem homocoupling-aldol-dehydration of 1c 5
2. '	The single crystal structure and crystallographic data for 3a6
3. (Copies of ¹ H and ¹³ C NMR spectra for all the isolated intermediates and products

1. General experimental information

1.1. General methods

Unless otherwise noted, all experiments were performed under argon atmosphere. All reagents were purchased from TCI, Acros or strem. Solvents were treated with 4 Å molecular sieves or sodium and distilled prior to use. Purifications of reaction products were carried out by flash chromatography using Qingdao Haiyang Chemical Co.Ltd silica gel (40-63 mm). Infrared spectra (IR) were recorded on a Brucker TENSOR 27 FTIR spectrophotometer and are reported as wavelength numbers (cm⁻¹). Infrared spectra were recorded by preparing a KBr pellet containing the title compound. ¹H and ¹³C NMR spectra were recorded with tetramethylsilane (TMS) as internal standard at ambient temperature unless otherwise indicated on a Bruker Avance DPX 600 fourier Transform spectrometer operating at 400 MHz for ¹H and 100 MHz for ¹³C. Chemical shifts are reported in parts per million (ppm) and coupling constants are reported as Hertz (Hz). Splitting patterns are designated as singlet (s), broad singlet (bs), doublet (d), triplet (t). Splitting patterns that could not be interpreted or easily visualized are designated as multiplet (m). Low resolution mass spectra were taken on a GC-MS instrument. High resolution mass spectra (HRMS) were recorded on an IF-TOF spectrometer (Micromass). Compounds described in the literatures were characterized by comparison of their ¹H, and ¹³C NMR spectra to the previously reported data. Crystal data were collected on a Bruker D8 Advance employing graphite monochromated Mo - K α radiation ($\lambda = 0.71073$ Å) at 293 (2) K and operating in the φ - ω scan mode. The structure was solved by direct methods SHELXS-97.

Table S1. The effect of base on the Pd (II) catalyzed tandem homocoupling-aldol-dehydration of $1b^{a}$

+ base +	Pd(OAc) ₂ + PPh ₃ + DMF	Ar 150°C	
1b		2a	3a
entry	base	yield of $2a$ (%) ^b	yield of $3a(\%)^b$
1	K_2CO_3	32	32
2	KHCO ³	19	12
3	Na ² CO ³	19	8
4	NaHCO ³	23	16
5	Cs ² CO ³	14	10
6	NaOtBu	38	5
7	NEt ³	-	16
8		-	10
9		-	12

^{*a*} All the reactions were run with **1b** (0.2 mmol), base (0.3 mmol), $Pd(OAc)_2$ (5 mol %), PPh_3 (10 mol %), and DMF (1.0 mL) under Ar in a sealed pressure tube at 150 °C for 3 h, followed by flash chromatography on SiO₂. ^{*b*} Isolated yield.

Ο Br + κ ₂ co	₃ + Pd(OAc) ₂ + PPh ₃ + DMF —	Ar 0 +	
1b		2a	3a
entry	temp(°C)	yield of $2a (\%)^{b}$	yield of 3a (%) ^{b}
1	110	18	12
2	130	22	12
3	150	32	32
4	160	28	18
5	170	41	10

Table S2. The effect of the reaction temperature on the Pd(II) catalyzed tandem homocoupling-adol-dehydration of $1b^{a}$

^{*a*} All the reactions were run with **1b** (0.2 mmol), K_2CO_3 (0.3 mmol), $Pd(OAc)_2$ (5 mol %), PPh_3 (10 mol %), and DMF (1.0 mL) under Ar in a sealed pressure tube for 3 h, followed by flash chromatography on SiO₂. ^{*b*} Isolated yield.

Table S3. Catalyst screening for this transformation^{*a*}

Br + K_2CC	D_3 + Pd salts + PPh ₃ + DMF ·	Ar 0 +	
1Ь		2a	3a
entry	Pd salts	yield of 2a (%) ^b	yield of $3a (\%)^{b}$
1	Pd(OAc) ₂	32	32
2	PdCl ₂	41	37
3	PdCl ₂ (CH ₃ CN) ₂	32	32
4	Pd(TFA) ₂	28	37

^{*a*} All the Reactions were run with **1b** (0.2 mmol), K_2CO_3 (0.3 mmol), Pd salts (5 mol %), PPh₃ (10 mol %), and DMF (1.0 mL) under Ar in a sealed pressure tube at 150 °C for 3 h, followed by flash chromatography on SiO₂. ^{*b*} Isolated yield.

Table S4. The effect of solvents on the Pd (II) catalyzed tandem homocoupling-adol-dehydration of 1b^{*a*}

entry	solvent	yield of 2a (%) ^b	yield of $3a(\%)^{b}$
1	DMF	41	37
2	Xy-lene	22	18
3	DMA	38	38
4	DMSO	38	14
5	NMP	32	18

^{*a*} All the Reactions were run with **1b** (0.2 mmol), K_2CO_3 (0.3 mmol), $PdCl_2$ (5 mol %), PPh_3 (10 mol %), and solvent (1.0 mL) under Ar in a sealed pressure tube at 150 °C for 3 h, followed by flash chromatography on SiO₂. ^{*b*} Isolated yield.

Table S5. Ligand screening for Pd-catalyzed tandem homocoupling-aldol-dehydration of 1b^a

$K_2CO_3 + K_2CO_3 + K_2C$	PdCl ₂ + ligand + DMF ⁻	Ar 0 + 150°C +	
1b		2a	3a
entry	ligand	yield of $2a (\%)^{b}$	yield of $3a (\%)^{b}$
1	\mathbf{L}_1	41	37
2	\mathbf{L}_{2}	41	42
3	L_3	42	39
4	\mathbf{L}_4	32	18
5	L_5	-	22
6	L_6	-	-
7	L_7	-	-
8	-	28	13

^{*a*} All the Reactions were run with **1b** (0.2 mmol), K_2CO_3 (0.3 mmol), $PdCl_2$ (5 mol %), ligand (10 mol %), and DMF (1.0 mL) under Ar in a sealed pressure tube at 150 °C for 3 h, followed by flash chromatography on SiO₂. ^{*b*} Isolated yield. L = ligand

о х + к ₂ со	$_3$ + PdCl ₂ + DPPP + DMF -	Ar 0 +	
1		2a	3a
entry	Х	yield of $2a (\%)^{b}$	yield of 3a (%) ^b
1	Br	41	42
2	Ι	80	<5
3	Cl	-	-

Table S6. The effect of substrate structure on Pd (II) catalyzed tandem homocoupling-adol-dehydration of 1b a

^{*a*} All the Reactions were run with **1** (0.2 mmol), K_2CO_3 (0.3 mmol), $PdCl_2$ (5 mol %), DPPP(10 mol %), and DMF (1.0 mL) under Ar in a sealed pressure tube at 150 °C for 1h, followed by flash chromatography on SiO₂. ^{*b*} Isolated yield.

Table S7. Ligand screening for the Pd-catalyzed tandem homocoupling-aldol-dehydration of 1c^{*a*}

Ο + κ ₂ CO ₃	+ PdCl ₂ + ligand + DMF	Ar 0 +	
1c		2a	3a
entry	ligand	yield of $2a$ (%) ^b	yield of 3a (%) ^b
1	L ₁	14	28
2	L_2	60	4
3	L_3	80	5
4	L_4	46	18
5 ^c	L_3	71	4

^{*a*} All the Reactions were run with **1c** (0.2 mmol), K₂CO₃ (0.3 mmol), PdCl₂ (5 mol %), ligand (10 mol %), and DMF (1.0 mL) under Ar in a sealed pressure tube at 150 °C for 3 h, followed by flash chromatography on SiO₂. ^{*b*} Isolated yield. **L** = ligand. ^{*c*} The reaction temperature was 140 °C.

2. The single crystal structure and crystallographic data for 3a

Figure S1 The Single crystal structure of compound 3a

Table S8	Crystal	data	and	structure	refinement	for 3a
----------	---------	------	-----	-----------	------------	--------

Identification code	3a
Empirical formula	$C_{24}H_{18}O_2$
Formula weight	338.38
Crystal system	Monoclinic, P21/n
space group	P-21/c
Temperature	293 (2) K
Wavelength	0.71073 Å
a (Å)	11.264 (2)
b (Å)	7.0576 (2)
c (Å)	22.435 (2)
α (°)	90 (3)
β (°)	93.75 (3)
γ (°)	90 (3)
V (Å3)	1779.7(6) A^3
Z, Calculated density	4, 1.263 Mg/m^3
Absorption coefficient	0.079 mm^-1
Crystal size	0.20 x 0.20 x 0.15 mm
F (000)	712.0
Theta range for data collection	3.03 to 27.48 deg
Reflections collected / unique	16740 / 4058 [R(int) = 0.0546]
Limiting indices	-14<=h<=14, -9<=k<=9, -27<=l<=29
Goodness-of-fit on F^2	1.021
Rindices (all data)	R1 = 0.1286, $wR2 = 0.2021$

	Х	у	Z	U(eq)
O(1)	-1768(2)	1794(4)	842(1)	87(1)
O(2)	2348(2)	3142(3)	2135(1)	69(1)
C(1)	-52(2)	628(4)	1364(1)	54(1)
C(2)	-651(2)	-603(4)	1727(1)	62(1)
C(3)	-58(2)	-1993(5)	2053(1)	65(1)
C(4)	1139(2)	-2224(5)	2007(1)	66(1)
C(5)	1749(2)	-1054(4)	1645(1)	60(1)
C(6)	1181(2)	417(4)	1327(1)	52(1)
C(7)	-771(2)	2143(4)	1053(1)	61(1)
C(8)	-327(3)	4115(6)	1039(2)	97(1)
C(9)	1844(2)	1592(4)	909(1)	52(1)
C(10)	1625(2)	1317(4)	302(1)	61(1)
C(11)	2207(2)	2356(5)	-108(1)	66(1)
C(12)	2991(2)	3741(4)	80(1)	61(1)
C(13)	3263(2)	4073(4)	688(1)	51(1)
C(14)	2707(2)	2944(4)	1104(1)	49(1)
C(15)	3070(2)	3108(4)	1752(1)	52(1)
C(16)	4348(2)	2951(4)	1913(1)	57(1)
C(17)	5215(2)	4027(4)	1715(1)	57(1)
C(18)	4961(2)	5672(4)	1316(1)	55(1)
C(19)	4046(2)	5707(4)	862(1)	53(1)
C(20)	3846(2)	7370(4)	534(1)	65(1)
C(21)	4524(3)	8968(5)	645(1)	77(1)
C(22)	5457(3)	8914(5)	1075(2)	80(1)
C(23)	5671(2)	7291(5)	1399(1)	71(1)
C(24)	6477(2)	3656(6)	1936(1)	82(1)

Table S9. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for 3a. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Table S10 Bond lengths [A] and angles [deg] for 3a

O(1)-C(7)	1.215(3)
O(2)-C(15)	1.222(3)
C(1)-C(2)	1.395(4)
C(1)-C(6)	1.404(3)
C(1)-C(7)	1.488(4)
C(2)-C(3)	1.371(4)

C(3)-C(4)	1.369(4)
C(4)-C(5)	1.373(4)
C(5)-C(6)	1.392(4)
C(6)-C(9)	1.488(3)
C(7)-C(8)	1.480(5)
C(9)-C(10)	1.383(3)
C(9)-C(14)	1.412(4)
C(10)-C(11)	1.375(4)
C(11)-C(12)	1.365(4)
C(12)-C(13)	1.399(3)
C(13)-C(14)	1.405(3)
C(13)-C(19)	1.489(4)
C(14)-C(15)	1.488(3)
C(15)-C(16)	1.465(3)
C(16)-C(17)	1.336(4)
C(17)-C(18)	1.483(4)
C(17)-C(24)	1.498(4)
C(18)-C(23)	1.400(4)
C(18)-C(19)	1.401(3)
C(19)-C(20)	1.396(4)
C(20)-C(21)	1.375(4)
C(21)-C(22)	1.380(5)
C(22)-C(23)	1.370(5)
C(2)-C(1)-C(6)	119.1(3)
C(2)-C(1)-C(7)	116.9(2)
C(6)-C(1)-C(7)	124.0(2)
C(3)-C(2)-C(1)	121.3(2)
C(4)-C(3)-C(2)	119.5(3)
C(3)-C(4)-C(5)	120.4(3)
C(4)-C(5)-C(6)	121.4(2)
C(5)-C(6)-C(1)	118.2(2)
C(5)-C(6)-C(9)	120.3(2)
C(1)-C(6)-C(9)	121.2(2)
O(1)-C(7)-C(8)	119.2(3)
O(1)-C(7)-C(1)	119.9(3)
C(8)-C(7)-C(1)	120.7(2)
C(10)-C(9)-C(14)	118.3(2)
C(10)-C(9)-C(6)	118.6(2)
C(14)-C(9)-C(6)	123.1(2)
C(11)-C(10)-C(9)	121.5(3)
C(12)-C(11)-C(10)	120.1(2)
C(11)-C(12)-C(13)	121.1(2)
C(12)-C(13)-C(14)	118.4(2)

C(12)-C(13)-C(19)	118.3(2)
C(14)-C(13)-C(19)	123.1(2)
C(13)-C(14)-C(9)	120.3(2)
C(13)-C(14)-C(15)	120.0(2)
C(9)-C(14)-C(15)	119.6(2)
O(2)-C(15)-C(16)	121.1(2)
O(2)-C(15)-C(14)	122.4(2)
C(16)-C(15)-C(14)	115.9(2)
C(17)-C(16)-C(15)	127.1(3)
C(16)-C(17)-C(18)	121.9(2)
C(16)-C(17)-C(24)	119.3(3)
C(18)-C(17)-C(24)	118.6(2)
C(23)-C(18)-C(19)	118.0(3)
C(23)-C(18)-C(17)	118.2(2)
C(19)-C(18)-C(17)	123.9(2)
C(20)-C(19)-C(18)	118.9(3)
C(20)-C(19)-C(13)	116.2(2)
C(18)-C(19)-C(13)	124.9(2)
C(21)-C(20)-C(19)	121.7(3)
C(20)-C(21)-C(22)	119.5(3)
C(23)-C(22)-C(21)	119.6(3)
C(22)-C(23)-C(18)	122.2(3)

Table S11 Anisotropic displacement parameters (A^2 x 10^3) for 3a. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

			-			
	U11	U22	U33	U23	U13	U12
O(1)	59(1)	98(2)	102(2)	-11(1)	-19(1)	3(1)
O(2)	64(1)	93(2)	53(1)	-4(1)	15(1)	-4(1)
C(1)	46(1)	58(2)	57(1)	-9(1)	2(1)	-2(1)
C(2)	52(1)	73(2)	63(2)	-12(2)	12(1)	-11(1)
C(3)	66(2)	68(2)	64(2)	1(2)	13(1)	-11(2)
C(4)	70(2)	63(2)	67(2)	4(1)	7(1)	-4(1)
C(5)	53(1)	63(2)	64(2)	2(1)	6(1)	2(1)
C(6)	46(1)	58(2)	53(1)	-7(1)	7(1)	-3(1)
C(7)	52(1)	68(2)	63(2)	-13(1)	1(1)	1(1)
C(9)	44(1)	59(2)	52(1)	-1(1)	3(1)	-1(1)
C(10)	52(1)	72(2)	57(2)	-3(1)	0(1)	-3(1)
C(11)	66(2)	82(2)	47(1)	-2(1)	-2(1)	-2(2)
C(12)	62(1)	71(2)	50(1)	7(1)	6(1)	-1(1)

C(13)	47(1)	59(2)	48(1)	2(1)	5(1)	4(1)
C(14)	43(1)	57(2)	47(1)	1(1)	6(1)	4(1)
C(15)	53(1)	55(2)	49(1)	3(1)	7(1)	0(1)
C(16)	56(1)	67(2)	49(1)	5(1)	-2(1)	1(1)
C(17)	51(1)	70(2)	51(1)	-8(1)	3(1)	-1(1)
C(18)	51(1)	60(2)	56(1)	-10(1)	13(1)	-5(1)
C(19)	50(1)	57(2)	51(1)	-1(1)	9(1)	1(1)
C(20)	66(2)	64(2)	66(2)	9(1)	18(1)	3(1)
C(21)	88(2)	61(2)	86(2)	5(2)	33(2)	-1(2)
C(22)	88(2)	65(2)	89(2)	-12(2)	33(2)	-20(2)
C(23)	66(2)	78(3)	70(2)	-15(2)	16(1)	-16(2)
C(24)	55(2)	110(3)	79(2)	-11(2)	-5(1)	4(2)

Table S12 Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for 3a

	X	у	Z	U(eq)
H(2A)	-1469	-479	1748	75
H(3A)	-465	-2773	2304	78
H(4A)	1542	-3181	2221	80
H(5A)	2559	-1248	1612	72
H(8A)	-900	4897	820	145
H(8B)	412	4144	849	145
H(8C)	-203	4584	1440	145
H(10A)	1072	410	167	73
H(11A)	2066	2115	-514	79
H(12A)	3351	4476	-202	73
H(16A)	4580	1997	2181	69
H(20A)	3239	7399	232	78
H(21A)	4355	10077	432	92
H(22A)	5938	9973	1144	96
H(23A)	6309	7263	1684	85
H(24A)	6507	2558	2190	123
H(24B)	6783	4732	2158	123
H(24C)	6950	3438	1602	123

