Supplementary Information

Hybrid Poly(3-hexyl thiophene):TiO₂ Nanorods Oxygen

Sensor

Che-Pu Hsu,^{†a} *Tsung-Wei Zeng*,^{†a} *Ming-Chung Wu*,^b *Yu-Chieh Tu*,^a *Hsueh-Chung Liao*,^a *and Wei-Fang Su*,^{*a}

^a Department of Materials Science and Engineering, National Taiwan University, Taipei 106-17, Taiwan

^b Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333-02, Taiwan

†These authors contributed equally to the work.

The response time and recovery time of the oxygen sensor

Herein we used exponential curve to accurately fit the experiment data of **Fig. 7 (b)** (60°C) and estimate the response time and recovery time of our sensors according to the definitions:

Response time: The response time is defined as the time our sensor takes to reach 90% of saturated R_0/R (steady-state gain value) after the exposure to oxygen gas.

Recovery time: The recovery time is defined as the time our sensor takes to reach 20% of the initial R_0/R values (before exposure to oxygen gas).

Fig. S1. Sensing responses of P3HT/TiO₂ hybrid film (50wt% TiO₂) testing at 60°C.

Fig. S2. Sensing recovery of P3HT/TiO₂ hybrid film (50wt% TiO₂) testing at 60°C.

Fig. S1 and **S2** present the sensing responses and recovery of $P3HT/TiO_2$ hybrid film (50wt% TiO₂) testing at 60°C. The red lines represent the exponential fitting results. According to the formula and the definitions, the response and recovery time can be estimated to be 4.1 and 2.3 minutes respectively.