Electronic Supplementary Information

Insertion of carbon monoxide into an aldehyde C=O double bond induced by an (η^3 - α -silabenzyl)carbonylmolybdenum complex

Yuto Kanno, Takashi Komuro and Hiromi Tobita*

Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

Synthetic procedures and characterisation data

General procedures. All manipulations were carried out under argon in a glovebox. Hexane was dried using a Glass Contour solvent purification system (Nikko Hansen & Co., Ltd.) and degassed by three freeze-pump-thaw cycles. Toluene was dried using an MBRAUN solvent purification system, then was further dried over CaH₂ and vacuum transferred. Pentane, benzene- d_6 and dichloromethane- d_2 were dried over CaH₂ and vacuum transferred. 2-Methylpropanal and 2,2-dimethylpropanal were dried over Na₂CO₃ and distilled under argon. All solvents and reagents were stored under argon over 4 Å molecular sieves in a glovebox. Cp*Mo(CO)₂{ $\eta^3(Si,C,C)$ -Si(p-Tol)₃} (1) was prepared according to the literature method.^{S1}

Physical measurements. ¹H, ¹³C{¹H} and ²⁹Si{¹H} NMR spectra were recorded on a Bruker AVANCE III 400 Fourier transform spectrometer. Chemical shifts were reported in parts per million. Coupling constants (*J*) were given in Hz. ²⁹Si{¹H} NMR measurements were performed using the DEPT pulse sequence. The residual proton (C₆D₅H, 7.15 ppm; CDHCl₂, 5.32 ppm) and the carbon resonances (C₆D₆, 128.0 ppm; CD₂Cl₂, 53.8 ppm) of deuterated solvents were used as internal references for ¹H and ¹³C NMR chemical shifts, respectively. Aromatic proton and carbon are abbreviated as ArH and ArC, respectively. ²⁹Si{¹H} NMR chemical shifts were referenced to SiMe₄ (0 ppm) as an external standard.

The NMR data were collected at room temperature unless indicated otherwise. Infrared spectra were measured on a KBr pellet sample using a Horiba FT-720 spectrometer. High-resolution mass spectra (HRMS) were measured on a Bruker Daltonics solariX 9.4T spectrometer operating in the electrospray ionization (ESI) mode. Elemental analyses were carried out using a J-Science Lab JM11 microanalyzer. Measurement of mass spectra and elemental analyses were performed at the Research and Analytical Center for Giant Molecules, Tohoku University.

Synthesis of Cp*Mo(CO)₂{ $\eta^2(C,O)$ -CH(*i*-Pr)OSi(*p*-Tol)₃} (2). Complex 1 (25 mg, 0.042 mmol) was dissolved in toluene (0.5 mL) in a Schlenk tube. To the dark purple solution, 2-methylpropanal (4 mg, 0.05 mmol) was added by a syringe. The mixture was stirred at room temperature for 1 min. The colour of the solution changed to orange. After evaporation of volatiles, the residual oil was washed with hexane (2 mL) and was evaporated to dryness. Complex 2 (a 5 : 1 mixture of two diastereomers 2a and 2b in CD₂Cl₂) was obtained as an orange powder in 83% yield (23 mg, 0.035 mmol); (found: C, 67.49; H, 6.84. C₃₇H₄₄O₃SiMo requires C, 67.25; H, 6.71%); v_{max}/cm⁻¹ 1909 s (CO_{sym}), 1805 s (CO_{asym}); *m/z* (ESI, positive mode) 662.2106 (M⁺. [C₃₇H₄₄O₃SiMo]⁺ requires 662.2108); NMR data for 2a: δ_H (400 MHz, C₆D₆, r.t.) 7.70 (d, 6H, J_{HH} 7.8, ArH), 7.03 (6H, d, J_{HH} 7.8, ArH), 3.49 (1H, d, J_{HH} 8.7, C(H)CHMe₂), 2.23–2.36 (1H, m, C(H)CHMe₂), 2.05 (s, 9H, C₆H₄Me), 1.68 (15H, s, Cp*), 1.22 (3H, d, J_{HH} 6.6, C(H)CHMe_AMe_B), 0.92 (3H, d, J_{HH} 6.4, C(H)CHMe_AMe_B); δ_H (400 MHz, CD₂Cl₂, 240 K) 7.34 (6H, d, J_{HH} 7.6, ArH), 7.20 (6H, d, J_{HH} 7.6, ArH), 3.16 (1H, d, J_{HH} 9.2, C(H)(CHMe₂)), 2.34 (9H, s, C₆H₄Me), 1.65 (15H, s, Cp*), 0.95 (3H, d, J_{HH} 6.4, C(H)CHMe_AMe_B), 0.53 (3H, d, J_{HH} 6.4, $C(H)CHMe_AMe_B$, the signal of $C(H)CHMe_2$ could not be assigned possibly due to the overlap with the Cp* signal (δ 1.68) of **2a**; $\delta_{\rm C}$ (101 MHz, CD₂Cl₂, 240 K) 263.9, 252.5 (CO), 140.7, 135.6, 129.2, 128.6 (ArC), 104.5 (C₅Me₅), 87.5 (C(H)CHMe₂), 38.1 (C(H)CHCMe₂), 25.2 (C(H)CHMe_AMe_B), 21.4 (C₆H₄Me), 19.4 (C(H)CHMe_AMe_B), 10.8 (C₅Me₅); δ_{Si} (79.5 Hz, CD₂Cl₂, 240 K) –0.2; NMR data for **2b**: δ_H (400 MHz, C₆D₆, r.t.)

7.77 (6H, d, J_{HH} 7.8, ArH), 7.06 (6H, d, J_{HH} 7.8, ArH), 4.12 (1H, d, J_{HH} 9.6, C(*H*)CHMe₂), 1.78 (15H, s, Cp*), 1.09 (3H, d, J_{HH} 6.8, C(H)CH*Me*₄Me_B), 0.99 (3H, d, J_{HH} 6.1, C(H)CHMe_A*Me*_B), the C₆H₄*Me* and C(H)C*H*Me₂ signals could not be assigned possibly due to overlap with ¹H signals of **2a**; δ_{H} (400 MHz, CD₂Cl₂, 240 K) 7.41 (6H, d, J_{HH} 7.6, ArH), 7.21 (6H, d, J_{HH} 7.6, ArH), 3.44 (1H, d, J_{HH} 9.6, C(*H*)CHMe₂), 2.35 (9H, s, C₆H₄*Me*), 1.79 (15H, s, Cp*), 0.92 (3H, d, J_{HH} 6.4, C(H)CH*Me*₄Me_B), 0.73 (3H, d, J_{HH} 6.4, C(H)CHMe_A*Me*_B), the signal of C(H)*CH*Me₂ could not be assigned possibly due to overlap with other ¹H signals of **2a** or **2b**; δ_{C} (101 MHz, CD₂Cl₂, 240 K) 136.0 (ArC), 105.9 (C₆H₄*Me*), 11.0 (C₅*Me*₅), other signals for **2b** were not observed because their intensities were too weak; assignments of ¹H and ¹³C signals were confirmed by ¹H–¹³C HSQC and ¹H–¹³C HMBC NMR spectra in CD₂Cl₂ at 240 K.

Synthesis of Cp*Mo(CO)₂{ $\eta^2(C,O)$ -CH(t-Bu)OSi(p-Tol)₃} (3). In a Schlenk tube, 1 (24 mg, 0.041 mmol) was dissolved in toluene (0.5 mL), and then 2,2-dimethylpropanal (5 mg, 0.06 mmol) was added. After the mixture was stirred at room temperature for 1 min, the resulting orange solution was evaporated to dryness. Recrystallization of the residual orange oil from hexane (2 mL) at -35 °C afforded 3 in 76% yield (21 mg, 0.031 mmol) as an orange powder; (found: C, 67.96; H, 6.87. C₃₈H₄₆O₃SiMo requires C, 67.64; H, 6.87%); ν_{max}/cm⁻¹ 1927 s (CO_{sym}), 1803 s (CO_{asym}); δ_H (400 MHz, C₆D₆, r.t.) 7.77 (6H, d, J_{HH} 8.0, ArH), 7.02 (6H, d, J_{HH} 8.0, ArH), 3.94 (1H, s, C(H)CMe₃), 2.05 (9H, s, C₆H₄Me), 1.67 (15H, s, Cp*), 1.12 (9H, s, C(H)CMe₃); δ_H (400 MHz, CD₂Cl₂, 240 K) 7.44 (6H, d, J_{HH} 8.0, ArH), 7.21 (6H, d, J_{HH} 8.0, ArH), 3.62 (1H, s, C(H)CMe₃), 2.35 (9H, s, C₆H₄Me), 1.60 (15H, s, Cp*), 0.71 (9H, s, C(H)CMe₃); $\delta_{\rm C}$ (101 MHz, CD₂Cl₂, 240 K) 265.2, 254.9 (CO), 140.8, 136.2, 129.1, 128.6 (ArC), 104.7 (C₅Me₅), 93.8 (C(H)CMe₃), 36.7 (C(H)CMe₃), 28.2 (C(H)CMe₃), 21.4 (C₆H₄Me), 10.7 (C₅Me₅); assignments of ¹H and ¹³C signals were confirmed by ¹H–¹³C HSQC and ¹H–¹³C HMBC NMR spectra in CD₂Cl₂ at 240 K; δ_{Si} (79.5 MHz, CD₂Cl₂, 240 K) -2.5; *m/z* (ESI, positive mode) 676.2265 (M⁺. $[C_{38}H_{46}O_3SiMo]^+$ requires 676.2265).

NMR monitoring of a thermal reaction of 1 with 2,2-dimethylpropanal: formation of η^3 -oxaallyl complex 4. Complex 1 (5 mg, 9 μ mol) and Cp₂Fe (internal standard, less than 1 mg; $Cp = \eta^5 - C_5 H_5$) were dissolved in benzene- d_6 (0.6 mL). The solution was transferred into an NMR tube with a J-Young Teflon valve (5 mm o.d.). A ¹H NMR spectrum of the mixture was measured to determine the intensity ratio of the signals of 1 and Cp₂Fe. 2,2-Dimethylpropanal (1 mL, d = 0.793 g/mL, 9 µmol) was added to the solution. The colour of the mixture changed from dark-purple to orange instantaneously. The reaction was monitored by ¹H NMR spectroscopy at room temperature. After 10 min, complex 1 was completely consumed, and three-membered-ring complex 3 and η^3 -oxaallyl complex 4 were formed in the NMR yields of 68% and 11%, respectively. At this stage, the colour of the mixture was orange. Then, the intensities of the signals of **3** decreased slowly, and those of the signals of 4 increased concurrently. After 4 h, 3 completely disappeared and 4 was formed in 40% NMR yield as the main product. The colour of the reaction mixture changed to dark red. The products 3 and 4 were identified by comparing the ¹H NMR spectra with those of the authentic samples synthesised by the above-mentioned (for 3) and after-mentioned (for 4) procedures.

NMR monitoring of a thermal reaction of 3: formation of η^3 -oxaallyl complex 4. A solution of isolated 3 (5 mg, 7 µmol) and Cp₂Fe (internal standard, less than 1 mg) in benzene- d_6 (0.5 mL) was transferred into an NMR tube with a J-Young Teflon valve (5 mm o.d.). After 15 min, a ¹H NMR spectrum of the mixture was measured to determine the intensity ratio of the signals of 3 and Cp₂Fe. At this stage, the signals of complex 4 were observed besides those of 3 (3 : 4 = 1 : 0.25). The reaction was monitored by ¹H NMR spectroscopy at room temperature. As the intensities of the signals of 4 increased, those of 3 decreased. After 5 h, the signals of complex 3 disappeared, and reaction was completed. Complex 4 was formed in 41% NMR yield based on the conversion of complex 3 in the reaction mixture after 15 min. The product 4 was identified by comparing the ¹H and

²⁹Si{¹H} NMR spectra with those of the authentic sample synthesised by the aftermentioned procedure.

Synthesis of Cp*Mo(CO)₂[$\eta^3(O, C, C)$ -OC{OSi(*p*-Tol)₃}CH(*t*-Bu)] (4). To a toluene (2.5 mL) solution of 1 (25 mg, 0.042 mmol) in a Schlenk tube was added 2,2dimethylpropanal (4 mg, 0.05 mmol). The mixture was stirred at room temperature for 5 h, and then the resulting dark red solution was evaporated under vacuum. After the residual dark red oil was dissolved in pentane (0.5 mL), the solution was cooled at –35 °C. Complex 4 was obtained as reddish purple crystals in 40% yield (12 mg, 0.017 mmol); (Found: C, 66.86; H, 6.73. C₃₉H₄₆O₄SiMo requires C, 66.65; H, 6.60%); v_{max}/cm^{-1} 1932 s (CO_{sym}), 1844 s (CO_{asym}); $\delta_{\rm H}$ (400 MHz, C₆D₆) 7.82 (6H, d, $J_{\rm HH}$ 8.0, ArH), 7.08 (6H, d, $J_{\rm HH}$ 8.0, ArH), 2.30 (1H, s, OC{OSi(*p*-Tol)₃}C(*H*)CMe₃], 1.54 (15H, s, Cp*); $\delta_{\rm C}$ (101 MHz, C₆D₆) 257.7, 251.0 (CO), 155.0 [OC{OSi(*p*-Tol)₃}C(H)CMe₃], 140.3, 136.6, 130.2, 128.9 (ArC), 106.6 (C_5Me_5), 63.7 [OC{OSi(*p*-Tol)₃}C(H)CMe₃], 34.4 [OC{OSi(*p*-Tol)₃}C(H)CMe₃], 31.4 [OC{OSi(*p*-Tol)₃}C(H)CMe₃], 21.5 (C₆H₄Me), 10.2 (C₅Me₅); assignments of ¹H and ¹³C signals were confirmed by ¹H–¹³C HSQC and ¹H–¹³C HMBC NMR spectra; $\delta_{\rm Si}$ (79.5 MHz, C₆D₆) –8.1; m/z (ESI, positive mode) 704.2214 (M⁺, [C₃₉H₄₆O₄SiMo]⁺ requires 704.2214).

NMR monitoring of a reaction of 1 with 2,2-dimethylpropanal under a CO atmosphare. Complex 1 (5 mg, 9 μ mol) and Cp₂Fe (internal standard, less than 1 mg) were dissolved in benzene- d_6 (0.6 mL). The solution was transferred into an NMR tube with a J-Young Teflon valve (5 mm o.d.). A ¹H NMR spectrum of the mixture was measured to determine the intensity ratio of the signals of 1 and Cp₂Fe. 2,2-Dimethylpropanal (1 μ L, d = 0.793 g/mL, 9 μ mol) was added to the solution. The colour of the mixture changed to orange instantaneously. After standing the tube for 5 min at room temperature, the ¹H NMR signals of **3** were observed (78% NMR yield based on **1**). The NMR tube was then evacuated briefly to degas and was charged with 1 atm of CO gas. This procedure was repeated three times, and then the tube was shaken well. Conversion of **3** at room

temperature was monitored by ¹H NMR spectroscopy. Complex **3** was completely consumed in the course of 13 h, and the colour of the solution changed to dark red. Complex **4** was formed as the main product in 75% NMR yield based on **1**. The NMR yields of **3** and **4** were determined by comparison of the intensities of the Cp* signals of these complexes with that of the signal of Cp₂Fe. The products **3** and **4** were identified by comparing the corresponding ¹H NMR spectra with those of the authentic samples synthesised by the above-mentioned procedures.

X-ray crystal structure determination. X-ray quality single crystals of 2a (an orange plate) and 4 (a reddish-purple plate) were obtained from hexane (for 2a) or pentane (for 4) at -35 °C. Intensity data for the analysis were collected on a Bruker SMART APEXII CCD diffractometer with Cu K α radiation ($\lambda = 1.54178$ Å) using Bruker Helios multilayered confocal mirror monochromator under a cold nitrogen stream (T = 90 K) (for 2a) or on a Rigaku RAXIS-RAPID imaging plate diffractometer with graphite-monochromated Mo Ka radiation ($\lambda = 0.71069$ Å) under a cold nitrogen stream (T = 150 K) (for 4). An empirical absorption correction (for 2a) or a numerical absorption correction (for 4) was applied to the collected reflections. We could not obtain a sufficient amount of reflections for **2a**: Data completeness to $2\theta = 139.42^{\circ}$ is 88.0%. This is caused by the gradual degradation of crystallinity of the sample under X-ray irradiation. The structure of 4 was solved as a racemic twin [Flack parameter: 0.22(3)] in the acentric space group $P2_1$. The structures were solved by direct methods using the SHELXS-97 program^{S2} and refined by full matrix least-squares techniques on all F^2 data with SHELXL-97.^{S2} Anisotropic refinement was applied to all non-hydrogen atoms. All hydrogen atoms were placed at calculated positions. All calculations were carried out using Yadokari-XG 2009.^{S3} Selected crystallographic data for 2a and 4 are listed in Table S1. ORTEP drawings of two crystallographically independent molecules of each of 2a and 4 are depicted in Figs. S1 and S2, respectively. CCDC reference numbers: 990556 (2a) and 990557 (4).

compound	2a	4
formula	C ₃₇ H ₄₄ O ₃ SiMo	C ₃₉ H ₄₆ O ₄ SiMo
formula weight	660.75	702.79
crystal system	triclinic	monoclinic
crystal size/mm ³	$0.11 \times 0.06 \times 0.04$	$0.20\times0.15\times0.08$
space group	<i>P</i> (No. 2)	<i>P</i> 2 ₁ (No. 4)
a/Å	8.6566(3)	12.8069(3)
$b/{ m \AA}$	10.9696(4)	13.1036(4)
c/Å	35.7255(11)	21.5568(7)
α'^{o}	95.4889(13)	
<i>β</i> /°	92.2032(14)	90.7174(4)
$\gamma^{\prime o}$	97.1362(15)	
V/Å ³	3346.4(2)	3617.30(18)
Ζ	4	4
$D_{\rm calcd}/{ m g~cm^{-3}}$	1.312	1.290
<i>F</i> (000)	1384	1472
μ (Cu-K α or Mo-K α)/mm ⁻¹	3.806	0.433
reflections collected	31297	51709
unique reflections (R_{int})	11121 (0.0239)	15836 (0.1025)
refined parameters	777	834
R1, wR2 (all data)	0.0740, 0.1674	0.0853, 0.1364
R1, wR2 [$I > 2 \sigma(I)$]	0.0732, 0.1671	0.0681, 0.1279
GOF	1.361	1.147
Largest residual peak, hole/e Å ⁻³	1.863, -1.573	0.709, -0.986

Table S1 Crystallographic data for $Cp*Mo(CO)_2\{\eta^2(C,O)-CH(i-Pr)OSi(p-Tol)_3\}$ (**2a**) and $Cp*Mo(CO)_2[\eta^3(O,C,C)-OC\{OSi(p-Tol)_3\}CH(t-Bu)]$ (**4**).

Fig. S1 ORTEP drawing of two crystallographically independent molecules of $Cp*Mo(CO)_2\{\eta^2(C,O)-CH(i-Pr)OSi(p-Tol)_3\}$ (2a), i.e., molecules 2a-A and 2a-B, in the asymmetric unit. Thermal ellipsoids are drawn at the 50% probability level, and all hydrogen atoms are omitted for clarity. Selected interatomic distances (Å) and angles (°) for molecule 2a-A: Mo(1)–O(1) 2.175(4), Mo(1)–C(3) 2.167(6), O(1)–C(3) 1.434(7), O(1)–Mo(1)–C(3) 38.56(19); for molecule 2a-B: Mo(2)–O(4) 2.169(4), Mo(2)–C(40) 2.160(7), O(4)–C(40) 1.450(8), O(4)–Mo(2)–C(40) 39.1(2).

Fig. S2 ORTEP drawing of two crystallographically independent molecules of $Cp*Mo(CO)_2[\eta^3(O,C,C)-OC{OSi(p-Tol)_3}CH(t-Bu)]$ (4), i.e., molecules 4-A and 4-B, in the asymmetric unit. Thermal ellipsoids are drawn at the 50% probability level, and all hydrogen atoms are omitted for clarity. Selected interatomic distances (Å) and angles (°) for molecule 4-A: Mo(1)–O(3) 2.186(4), Mo(1)–C(3) 2.396(5), Mo(1)–C(4) 2.343(6), O(3)–C(3) 1.284(7), O(4)–C(3) 1.355(7), C(3)–C(4) 1.403(9), O(3)–Mo(1)–C(4) 61.27(18); for molecule 4-B: Mo(2)–O(7) 2.185(4), Mo(2)–C(42) 2.402(5), Mo(2)–C(43) 2.370(6), O(7)–C(42) 1.277(7), O(8)–C(42) 1.333(7), C(42)–C(43) 1.420(8), O(7)–Mo(2)–C(43) 61.23(17).

References

- S1 T. Komuro, Y. Kanno and H. Tobita, *Organometallics*, 2013, **32**, 2795.
- S2 G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112.
- S3 (a) K. Wakita, Yadokari-XG, Software for Crystal Structure Analyses, 2001; (b)
 Yadokari-XG 2009, Software for Crystal Structure Analyses. See: C. Kabuto, S.
 Akine, T. Nemoto and E. Kwon, J. Cryst. Soc. Jpn., 2009, 51, 218.