Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information

Vapour Solid Reaction Growth of SnO₂ Nanorods as an Anode Material for Li Ion Batteries

Kai-Chieh Hsu,^a Chi-Young Lee,^b and Hsin-Tien Chiu*^a

^aDepartment of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan, 30010, R. O. C.

^bDepartment of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, 30013, R. O. C.

*Corresponding author. E-mail: htchiu@nctu.edu.tw (H.-T. Chiu)

- Table S1.
 Summary of electrochemical properties of Sn containing electrodes for rechargeable Liion batteries.
- **Table S2.**Experimental conditions for samples prepared by reacting $SnCl_{4(g)}$ and $CaO_{(s)}$.
- **Figure S1.** Low magnification SEM image in (a) shows the presence of a less observed morphology at the centre. (b) Enlarged view of the morphology.
- Figure S2. (a) Low and (b) high magnification SEM images and (c) EDX data from an area of sample B. (d) (f) Corresponding data from another area of B.
- **Figure S3.** XRD patterns of samples B and C. Standard XRD patterns and the corresponding JCPDS file numbers are shown also.
- Figure S4. Low and high magnification SEM images of samples D and E. The EDX data are from the selected areas marked by red rectangles. Images and EDX of D are shown in (a) (c). The data suggest that D is composed of SnO₂. Images and EDX of E are shown in (d) (h). There two types of solids. The NRs shown in (d) and (e) are SnO₂, indicated by the EDX result in (f). According to the EDX in (h), the particles in (g) are CaSnO₃. The assignments are consistent with the XRD results shown in Figure S5.
- **Figure S5.** XRD patterns of samples A, D and E. Standard XRD patterns and the corresponding JCPDS file numbers are shown also.
- Figure S6. (a) Discharge capacities of electrodes fabricated from commercial SnO₂ powders (sizes: 1 10 µm and 100 nm) at a cycling rate 100 mA g⁻¹. (b) Electrochemical performance of a SnO₂ NR electrode cycled between 0.005 V and 2.0 V vs. Li/Li⁺ after first ten cycles were cycled at 100 mA g⁻¹. 100 mA g⁻¹ (●), 500 mA g⁻¹ (∞), 1000 mA g⁻¹ (□), and 3000 mA g⁻¹ (*).
- Figure S7. (a) EDX of a SnO₂ NR electrode after 100 cycles of lithiation and de-lithiation. The upper result was obtained from the whole-scan of the area shown in Figure 4a. The Cl content was low. The Pt signal was from the sputtered Pt metal, used to enhance the sample conductivity. The lower result was from the centre–point of one NR. (b) XRD patterns of sample A before and after 100 cycles of lithiation and de-lithiation. Related XRD patterns and the corresponding JCPDS file numbers are shown also.
- Figure S8. SEM image of an electrode fabricated from a mixture of commercial SnO_2 powder, carbon black, and binder after 50 cycles of lithiation and de-lithiation.

	Experimental Method	Morphology and Composition	Electrochemical Performance			
Electrode material			Working Potential (V)	Cycling Rate	Capacity	Ref
					(mAh g ⁻¹)	
NTs	Sol-gel vacuum-suction	D of NT: 200 nm		50 cycles at 100 mA g ⁻¹ (1 C = 790 mA g ⁻¹)	250	
SnO ₂ NWs	Thermal-evaporation	D, L of NW: 200 nm, ~tens µm	0.05 – 1.5		210	14ª
NPs	sol–gel	Size of NP < 100 nm			90	
SnO ₂ NTs	Infiltration technique	Diameter: 180 – 230 nm	0.005 – 2	80 cycles at 0.05 mA·cm ⁻²	525	15 ^b
SnO ₂ NWs	Thermal evaporation	Diameter: 200 – 500 nm	0.005 - 2.5	50 cycles at 100 mA g ⁻¹	460	16°
		Length: 10 µm		$(1 \text{ C} = 782 \text{ mA g}^{-1})$	400	10
SnO ₂ nanoflowers	Free cation-induced decomposition	Diameter: 50 – 110 nm	0.01 – 2	20 cycles at 0.1 C (1 C = 783 mA g^{-1})	450	17 ^d
SnO ₂ nanosheets	Hydrothermal method	Thin: 1.5 – 3 nm	0.005 – 3	20 cycles at 0.1 C	559	18 ^e
				$(1 \text{ C} = 782 \text{ mA g}^{-1})$		
SnO ₂ hollow nanospheres	Hydrothermal method	Diameter: 50 – 200 nm	0.005 - 2	40 cycles at 0.2 C	450	19 ^f
		Wall thickness: 10 nm	0.000 2	$(1 \text{ C} = 645 \text{ mA g}^{-1})$		
SnO ₂ NRs	Vapour-Solid Reaction Growth (VSRG)	Diameter: 15 nm,	0.005 - 2	100 cycles at 100 mA g ⁻¹	435	This
		Length: 1000 nm		$(1 \text{ C} = 790 \text{ mA g}^{-1})$		work

Table S1. Summary of electrochemical properties of Sn containing electrodes for rechargeable Li-ion batteries.

SnO ₂ /Cu nanosheets	Rolled-up nanotechnology	SnO ₂ film: 50 nm,	0.05 - 1.5	150 cycles at 100 mA g ⁻¹	764	36 ^g
		Cu film: 3 nm		$(1 \text{ C} = 782 \text{ mA g}^{-1})$		

NT: nanotube, NW: nanowire, NP: nanoparticle.

- a. M.-S. Park, Y.-M. Kang, G.-X. Wang, S.-X. Dou and H.-K. Liu, Adv. Funct. Mater., 2008, 18, 455-461.
- b. Y. Wang, J. Y. Lee and H. C. Zeng, Chem. Mater., 2005, 17, 3899-3903.
- c. M. S. Park, G. X. Wang, Y. M. Kang, D. Wexler, S. X. Dou and H. K. Liu, Angew. Chem., 2007, 119, 764-767.
- d. J. Ning, Q. Dai, T. Jiang, K. Men, D. Liu, N. Xiao, C. Li, D. Li, B. Liu, B. Zou, G. Zou and W. W. Yu, Langmuir, 2009, 25, 1818-1821.
- e. C. Wang, Y. Zhou, M. Ge, X. Xu, Z. Zhang and J. Z. Jiang, J. Am. Chem. Soc., 2010, 132, 46-47.
- f. X. W. Lou, Y. Wang, C. Yuan, J. Y. Lee and L. A. Archer, Adv. Mater., 2006, 18, 2325-2329.
- g. J. Deng, C. Yan, L. Yang, S. Baunack, S. Oswald, H. Wendrock, Y. Mei and O. G. Schmidt, ACS Nano, 2013, 7, 6948-6954.

Sample	Reaction	Reaction	Washed	Observed Solid Phases
	Temperature (K)	Time (min)	by $H_2O_{(l)}$	in the Product
А	1023	360	Yes	SnO _{2(s)}
В	1023	360	No	SnO _{2(s)} , CaCl _{2(s)}
С	1023	60	No	$SnO_{2(s)}, CaSnO_{3(s)}, CaCl_{2(s)}, CaO_{(s)}$
D	1073	360	Yes	SnO _{2(s)}
Е	973	360	Yes	$SnO_{2(s)}, CaSnO_{3(s)}$

Table S2.Experimental conditions for samples prepared by reacting $SnCl_{4(g)}$ and $CaO_{(s)}$.

 $SnCl_{4(l)}$ was evaporated at room temperature by $Ar_{(g)}$ (10 sccm). Another flowing stream of $Ar_{(s)}$ (10 sccm) was also introduced into the reactor.

Figure S1. Low magnification SEM image in (a) shows the presence of a less observed morphology at the centre. (b) Enlarged view of the morphology.

Figure S2. (a) Low and (b) high magnification SEM images and (c) EDX data from an area of sample B. (d) – (f) Corresponding data from another area of B.

Figure S3. XRD patterns of samples B and C. Standard XRD patterns and the corresponding JCPDS file numbers are shown also.

Figure S4. Low and high magnification SEM images of samples D and E. The EDX data are from the selected areas marked by red rectangles. Images and EDX of D are shown in (a) – (c). The data suggest that D is composed of SnO_2 . Images and EDX of E are shown in (d) – (h). There two types of solids. The NRs shown in (d) and (e) are SnO_2 , indicated by the EDX result in (f). According to the EDX in (h), the particles in (g) are CaSnO₃. The assignments are consistent with the XRD results shown in Figure S5.

Figure S5. XRD patterns of samples A, D and E. Standard XRD patterns and the corresponding JCPDS file numbers are shown also.

Figure S6. (a) Discharge capacities of electrodes fabricated from commercial SnO₂ powders (sizes: 1 - 10 µm and 100 nm) at a cycling rate 100 mA g⁻¹. (b) Electrochemical performance of a SnO₂ NR electrode cycled between 0.005 V and 2.0 V vs. Li/Li⁺ after first ten cycles were cycled at 100 mA g⁻¹. 100 mA g⁻¹ (●), 500 mA g⁻¹ (∞), 1000 mA g⁻¹ (□), and 3000 mA g⁻¹ (*).

Figure S7. (a) EDX of a SnO₂ NR electrode after 100 cycles of lithiation and de-lithiation. The upper result was obtained from the whole-scan of the area shown in Figure 4a. The Cl content was low. The Pt signal was from the sputtered Pt metal, used to enhance the sample conductivity. The lower result was from the centre–point of one NR. (b) XRD patterns of sample A before and after 100 cycles of lithiation and de-lithiation. Related XRD patterns and the corresponding JCPDS file numbers are shown also.

Figure S8. SEM image of an electrode fabricated from a mixture of commercial SnO₂ powder, carbon black, and binder after 50 cycles of lithiation and de-lithiation.