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Estimation of Förster critical radius for the Rh6G/NB system 

The FRET rate from an electronically excited donor (D*) to an acceptor (A) separated by a distance r is 
given by1,2 
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where τD is the donor lifetime in the absence of acceptors and R0 is the most characteristic FRET parameter, 
known as Förster radius and defined as the donor-acceptor separation for which the donor emits and transfers 
(to the acceptor) its energy with the same probability. R0 depends on the photophysical properties of donor 
and acceptor and is given by3 
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In Eq. (S2) the integral accounts for the spectral overlap of the normalized donor fluorescence spectrum 
FD(λ), with the absorption spectrum of the acceptor εA(λ) (M-1cm-1). φf and n are the fluorescence quantum 
yield of the donor in the absence of acceptors and the refractive index of the host medium, respectively, and κ2 
is the orientation factor which accounts for the relative orientation of donor and acceptor transition dipole 
moments in the host medium. 

In the photophysical characterization of the latex nanoparticles, FD(λ), εA(λ), and φf=0.7 have been 
obtained. Taking into account that the mixture MMA/HEMA/GMA has a refractive index n~1.5 and assuming 
κ2~2/3 (isotropic dynamic averaging), one obtains a Förster radius R0 = 49 Å 
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Derivation of Eq. 7 in main text: Change in NP size upon growth of multiple shells 

The volume occupied in a single NP by the multiple shells (VS) is given by: 
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where R and RC are the radii of the NP after and before the shells growth, respectively. Simultaneously, VS = 
mS/ρS, with mS and ρS being the mass and density of the shells in a single NP. Substituting this expression into 
Eq. S3 and solving for R one obtains: 
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On the other hand, the total number of NPs nucleated before the shells growth (NNP) is given by NNP=MC/mC, 
where MC is the total monomer mass introduced in the reactor to nucleate the cores, and mC is the mass of a 
single core. If all of the added monomer mass introduced in the reactor to grow the shells (MS) were used to 
produced uniform and identical coatings over each NP (no new particles formed, NNP constant), then 
mS=MS/NNP should hold, and hence: 
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Furthermore, mC=VC·ρC=4π/3R3
C·ρC, with VC and ρC the volume and density of a single core. Substitution of 

this expression into Eq. S5 leads to: 
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Finally, introducing Eq. S6 into Eq. S4, reordering terms, and introducing the ratio r=MS/MC, one arrives to 
Eq. 7 in the main text. 

S

C

CC
r

d
d

R
R

ρ
ρ

+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
1

33

 

The previous derivation assumes several issues, including that the NPs are monodispersed, all of the shells 
have the same density, and the polymerization yield of core nucleation and shell growth is the same. Hence, 
Eq. (7) must be considered as the ideal case. 

 

Fit expressions for FRET analysis in spherical NPs 

Model 1: Core/Surface distributions: 

The dye distribution in a Core/Surface NP can be described mathematically as CD,A(R)= CS
D,Aδ(rD-RS)-

(CS
D,A-CC

D,A)H(RS-rD), where CS
D,A and CC

D,A are the surface and volume densities of donors and acceptors in 
the surface (S) and the core (C), respectively, H(RS-rD) and δ(rD-RS) are the Heaviside step function and the 
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Dirac delta function, respectively, and RS is the nanoparticle radius. Substitution of this expression into Eq. 4 
of the main text yields: 
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where max{a,b}=1/2(a+b+|a-b|) and min{a,b}=1/2(a+b-|a-b|), and 
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We allow the donor to have different lifetimes in the core (τD,C) and the surface (τD,S). The fitting parameters 
are CC

A, CS
A, CC

D, and CS
D. Nevertheless, as the donor and acceptor molecules have very similar nature (both 

chemical and electrostatic), they will have similar affinities for a given monomer mixture, hence, we assume 
that both dyes will present the same dye distribution, i. e., CC

A/CS
A= CC

D/CS
D. This constraint reduces the 

degrees of freedom to CC
A and CS

A. 

Model 2: Core/Shell distributions: 

The dye distribution in a generic Core/Shell nanoparticle is given by CD,A(R)= CS
D,AH(RS-rD)-(CS

D,A-
CC

D,A)H(RSC-rD), where CS
D,A and CC

D,A are the volume density of donor and acceptor in the shell (S) and the 
core (C), respectively, and RSC is the core radius. Substitution of this expression into Eq. 4 of the main text 
results in: 
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where we have assumed that the lifetime of the donor in core and shell are the same. The fitting parameters 
are CC

A, CS
A, CC

D, and CS
D. Again we can assume CC

A/CS
A= CC

D/CS
D. In addition: 
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Theoretical evaluation of dye diffusion in core/shell NPs 

With the aim to have a clearer understanding of the diffusion processes within core/shell NPs (equilibrium 
and transient dye distributions, time scales, etcetera), we decided to analyze the behavior predicted by existing 
diffusion models. In this sense, Fick’s second law4 predicts how diffusion causes the concentration of a given 
element to change in space and time for a given diffusion coefficient (dependent on the particular material 
properties). Fick’s second law reads: 
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where C is the volume number concentration (nm-3) of the diffusive element and D is the diffusion coefficient 
along the NP radius in units of cm2s-1. As we are dealing with spherical NPs, we use spherical coordinates, and 
since the dye distributions present spherical symmetry (C=C(r,t) and D=D(r)), the axial and azimuthal 
derivatives vanish, so that: 
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Substituting Eqs. S14 into Eq. S13, Fick’s second law simplifies to: 
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As the NPs we are dealing with present core/shell morphologies with different, but homogeneous, monomer 
mixtures in core and shell, we may assume that each region will present different, but constant, diffusion 
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coefficients DC and DS for core and shell, respectively. In other words, the diffusion coefficient along the NP 
can be mathematically described as D(r)= DSH(RS-r)-(DS-DC)H(RSC-r), where H(RS-r) is the Heaviside step 
function, RS is the NP external radius, and RSC is the core radius. 

Since we are dealing with a chemical system in which every region, due to its different composition, 
presents a different affinity for the dyes, it is more adequate to work with chemical potentials. The chemical 
potential inside the NPs is: 

),(ln)(),( 0 traRTrtr += μμ                                                             (S16) 

where a(r,t) is the dye activity in the polymer matrix, μ0(r) is the reference chemical potential of a solution 
with an activity equal one (μ0(r)=μC

 0 for 0<r<RSC and μ0(r) = μS
 0 for RSC <r<RS), R=8.31 JK-1mol-1 is the gas 

constant and T=300 K is the matrix temperature. Particle regions with large affinity for the dye (high 
solubility) will reduce the reference chemical potential and will enhance the dye concentration. At low 
concentrations, as the ones in our NPs, the activity can be replaced by the local dye concentration, i. e., 
a(r,t)≈C(r,t). Then, concentration and chemical potential are related as: 
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Substitution of Eq. S17 into Eq. S15 yields: 
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Eq. S18 is not defined at r= RSC, as the term ∂D/∂r·∂μ/∂r diverges due to the mathematical description used 
for the core/shell properties. Experimentally this term does not diverge, as there is a smooth transition in both 
D and μ (or C) from core to shell. Hence, we can assume heuristically that the values of D and μ at RSC are the 
mean of the values of D and μ at either side of the interphase, i. e.: 
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where δr is half the thickness of the interphase and will be, in practice, the numerical spatial integration step. 
As we assume that no dyes can enter or leave the NP (i. e., the system is perfectly insulated), the von 
Neumann boundary condition applies to this system of equations, so that: 
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As initial conditions we use those of sample CS1: 
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These initial conditions have to be taken with care, since they are idealistic, as they assume that the dye 
diffusion process begins once the shell is completely formed. Experimentally, the shell needs some time to 
grow, and during this growing process, the dye diffusion would take place. Nevertheless, the final equilibrium 
state computed with the above system of equations will be more realistic, since is independent on the initial 
state. 

Then, to obtain the time evolution of the dye concentration profile in the NPs, being what can be evaluated 
by means of FRET, Eq. S18 is numerically solved with boundary and initial conditions of Eqs. S19-S21, and 
the computed chemical potential is substituted at each time step into Eq. S17. To solve this problem the values 
of μC

0, μS
0, DC and DS are needed, but they are not well defined for these nanostructured material and, 

consequently, they have to be estimated attending to some particular properties of the NPs. All systems evolve 
to the equilibrium by compensating the differences in the chemical potentials along the system, i. e., at 

equilibrium μ(r)=constant ∀r. For our particular case, this equilibrium condition implies that Δμ0=μC
 0-μS

 

0=RTln(H), where H=Ceq
S/Ceq

C is the partition ratio and Ceq
S and Ceq

C are the equilibrium concentrations in the 
shell and core, respectively. Hence, by making use of the CA

S and CA
C values obtained from the fit to the 

fluorescence intensity decay of sample CS1 (Fig. 2a), it can be heuristically inferred that, in the particular case 
of this sample, Δμ0≈RTln(2).  

On the other hand, the absolute values for DC and DS are not very relevant for our purposes, as we look for a 
qualitative understanding of the problem. In fact, the absolute value of D has no influence on the equilibrium 
distribution, but it affects the time scales (the higher D is, the quicker the equilibrium is reached). 
Nevertheless, we chose diffusion coefficients in the order of 10-16 cm2s-1, much lower than the ones for large 
dyes diffusing in PMMA below glass transition temperature5 in which diffusion is highly hindered. Indeed, in 
our case the diffusion coefficient would be much higher, since the NP could be partially swallowed with 
water, the dye molecules are reduced in size, and during the synthesis the temperature is raised, facts that 
favors dye diffusion. Hence, the time scales evaluated in the following could be taken as upper limits of the 
actual situation. As for the particular ratio DC/DS, we may assume that it is slightly higher than 1, meaning that 
that the dyes move much more freely in the core than in the shell, which is consistent with the different 
monomer compositions used for both regions (Table 1). For the core we used MMA, HEMA and GMA, 
monomers which hardly cross-link upon polymerization, and so the core will be composed by a linear 
copolymer. On the other hand, for the shell we used MMA, HEMA, GMA and the cross-linker monomer 
EGDMA, which results in the shell being a cross-linked copolymer. Cross-linked polymers are known to have 
smaller free volumes than linear polymers,6 while it is known that the higher the free volume is, the higher the 
diffusion coefficient becomes.7 Consequently, the core, which is made of a linear copolymer with higher free 
volume, would present a higher diffusion coefficient. Nevertheless, as explained before, the particular choice 
of DC/DS has a limited effect on the present problem, and will be considered as unity for simplicity. 
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Computed chemical potential along the NP radius as a function of time for sample CS1 

 

 

Figure S1 Chemical potential along a NP analogous to CS1 as a function of time both for a) the acceptor and 
b) the donor. For better inspection, only the region from 10 nm is shown. The solid and dashed vertical lines 

indicate the position of the NP and core radii, respectively.  
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