Supporting Information

A FRET based 'off-on' molecular switch: an effective design strategy for selective detection of nanomolar Al^{3+} ions in aqueous media[†]

Buddhadeb Sen,^a Siddhartha Pal,^a Somenath Lohar,^a Manjira Mukherjee,^a Sushil Kumar Mandal,^b Anisur Rahman Khuda-Bukhsh,^b and Pabitra Chattopadhyay^{*,a}

^a Department of Chemistry, The University of Burdwan, Golapbag, Burdwan, 713104, India,

^bMolecular Biology and Genetics Laboratory, Department of Zoology, Kalyani University, India

Corresponding author: pabitracc@yahoo.com

CONTENTS

- 1. Fig. S1A FTIR spectrum of probe (L¹)
- 2. Fig. S1B ESI-MS spectrum of probe (L¹) in MeOH
- 3. Fig. S1C ¹H NMR of the probe (L^1) in CDCl₃
- 4. **Fig. S1D** ¹³C NMR of the probe (L^1) in CDCl₃
- 5. Fig. S2A FTIR spectrum of [Al(L)(NO₃)₂]
- 6. Fig. S2B ESI-MS spectrum of [Al(L)(NO₃)₂] in MeOH
- 7. Fig. S2C ¹H NMR of [Al(L)(NO₃)₂] in CDCl₃
- 8. Fig. S2D ¹³C NMR spectrum of [Al(L)(NO₃)₂] in DMSO-d6
- 9. Scheme S1 Synthesis of L-Al Complex as [Al(L)(NO₃)₂]
- 10. Fig. S3 Job's plot analysis from UV-vis data showing maximum absorption at 1:1 ratio [L¹: Al³⁺]
- Fig. S4 Effect of pH in absence of Al³⁺ ions and in presence of Al³⁺ ions in HEPES buffer (1 mM, pH 7.4; 2% EtOH) at 25°C
- 12. Fig. S5 Detection limit of Al³⁺ ions (33 x 10⁻⁹ M) in HEPES buffer (1 mM, pH 7.4; 2% EtOH) at $\lambda_{em} = 588$ nm
- Fig. S6 Calibration curve in the nanomolar range (0-300 nM) for calculating the LOD (6.19 nM) of Al³⁺ by L¹ in HEPES buffer (1 mM, pH 7.4; 2% EtOH) at 25 °C
- 14. Fig. S7 Fluorescence intensity assay of L¹ in presence of different metal ion salts in HEPES buffer (1 mM, pH 7.4; 2% EtOH) at λ_{em} = 588 nm
- 15. **Fig. S8** Visual color change of the probe due to the addition of different cations in HEPES buffer (1 mM, pH 7.4; 2% EtOH)
- Fig. S9 Fluorescence color of the probe in absence and presence of different metal ions in HEPES buffer (1 mM, pH 7.4; 2% EtOH)
- 17. Fig. S10 Signaling of Al³⁺ ions by L¹ in the presence of 10-50 eq. of competitive ions in HEPES buffer (1 mM, pH 7.4; 2% EtOH) at λ_{ex} = 550 nm
- Fig. S11 Overlap spectra of donor emission and acceptor absorbance of L¹ (10 μM) in HEPES buffer (1 mM, pH 7.4; 2% EtOH)
- Fig. S12 Binding constant (K) value 5.81 x 10⁶ M⁻¹ determined from the determined from the intercept/slope of the plots resulting in the interactions of L¹ with Al³⁺
- Fig. S13 Partial ¹H NMR spectra for L¹ (10 mM) in presence of varying [Al³⁺] [A) 0 mM, B) 5 mM and C) 10 mM] in CDCl₃
- 21. Fig. S14 Time resolved fluorescence decay of L¹ in absence and presence of added Al³⁺ ions at $\lambda_{em} = 588$ nm
- 22. Fig. S15 Cytotoxic effect of L1 (5, 10, 20, 50 and 100 µM) in HeLa cells incubated for 6 h

Fig. S1A FTIR spectrum of probe (L¹)

Fig. S1B ESI-MS spectrum of probe (L¹) in MeOH

Fig. S1D 13 C NMR of the probe (L¹) in CDCl₃

Fig. S2A FTIR spectrum of [Al(L)(NO₃)₂]

Fig. S2B ESI-MS spectrum of $[Al(L)(NO_3)_2]$ in MeOH

Fig. S2C ¹H NMR of [Al(L)(NO₃)₂] in CDCl₃

Fig. S2D 13 C NMR spectrum of [Al(L)(NO₃)₂] in DMSO-d6

Scheme S1 Synthesis of L-Al Complex as [Al(L)(NO₃)₂]

Fig. S3 Job's plot analysis from UV-vis data showing maximum absorption at 1:1 ratio [L¹: Al³⁺] at $\lambda_{em} = 588$ nm

Fig. S4 Effect of pH in absence of Al³⁺ ions and in presence of Al³⁺ ions in HEPES buffer (1 mM, pH 7.4; 2% EtOH) at 25°C at λ_{em} = 588 nm

Detection Limit

The detection limit was determined from the fluorescence titration data at λ_{em} 588 nm using one earlier reported method by Veciana et. al.^{1a} as well as by 3 σ method.^{1b} Results showed that both were comparable with each other.

Fig. S5 Detection limit of Al³⁺ (33 x 10⁻⁹ M) in HEPES buffer (1 mM, pH 7.4; 2% EtOH) at λ_{em} = 588 nm

Fig. S6 Calibration curve in the nanomolar range (0-300 nM) for calculating the LOD of Al³⁺ by L¹ in HEPES buffer (1 mM, pH 7.4; 2% EtOH) at 25 °C [Here, S = 0.62316, σ = 1.286, LOD (C_L) = 3 σ /S = 6.19 nM]

Fig. S7 Fluorescence intensity assay of L¹ in presence of different metal ion salts in HEPES buffer (1 mM, pH 7.4; 2% EtOH) at 25 °C (λ_{ex} = 550 nm), a) Na⁺, b) K⁺, c) Ca²⁺, d) Mg²⁺, e) Al³⁺, f) Cr³⁺, g) Mn²⁺, h) Fe³⁺, i) Co²⁺, j) Ni²⁺, k) Cu²⁺, l) Zn²⁺, m) Cd²⁺, n) Hg²⁺, and o) Pb²⁺ at λ_{em} = 588 nm.

Fig. S8 Visual color change of the probe due to the addition of different cations in HEPES buffer (1 mM, pH 7.4; 2% EtOH)

Fig. S9 Fluorescence color of the probe in absence and presence of different metal ions in HEPES buffer (1 mM, pH 7.4; 2% EtOH)

Fig. S10 Signaling of Al³⁺ ions by L¹ in the presence of 10-50 eq. of competitive a) Na⁺, b) K⁺, c) Ca²⁺, d) Mg²⁺, e) Cr³⁺, f) Mn²⁺, g) Fe³⁺, h) Co²⁺, i) Ni²⁺, j) Cu²⁺, k) Zn²⁺, l) Cd²⁺, m) Hg²⁺, and n) Pb²⁺ ions in HEPES buffer (1 mM, pH 7.4; 2% EtOH) at 25 °C at λ_{ex} = 550 nm

Fig. S11 Overlap spectra of donor emission and acceptor absorbance of L^1 (10 μ M) in HEPES buffer (1 mM, pH 7.4; 2% EtOH)

Binding Constant: The binding constant value was determined from the emission intensity data following the modified Benesi-Hildebrand equation.²

$$1/\Delta F = 1/\Delta F_{max} + (1/K[C])(1/\Delta F_{max}), \Delta F = F_x - F_0, \Delta F_{max} = F_{\infty} - F_0$$

i.e. $(F_{\infty} - F_0)/(F_x - F_0) = 1 + 1/K[C]$

where F_0 , F_x , and F_∞ are the emission intensities of organic moiety considered in the absence of Al³⁺ ions, at an intermediate Al³⁺ concentration, and at a concentration of complete interaction, respectively, and where K is the association constant and [C] is the Al³⁺ concentration. K value (5.81 x 10⁶ M⁻¹) was calculated from the intercept/slope using the plot of ($F_\infty - F_0$) /($F_x - F_0$) against [C]⁻¹.

Fig. S12 Binding constant (K) value 5.81 x 10⁶ M⁻¹ determined from the determined from the intercept/slope of the plots resulting in the interactions of L¹ with Al³⁺

Fig. S13 Partial ¹H NMR spectra for L¹ (10 mM) in presence of varying [Al³⁺] [A) 0 mM, B) 5 mM, and C) 10 mM] in CDCl₃

Fig. S14 Time resolved fluorescence decay of L¹ (10 μ M) in absence and presence of added Al³⁺ in HEPES buffer (1 mM, pH 7.4; 2% EtOH) at 25 °C using a nano LED of 377 nm as the light source at $\lambda_{em} = 588$ nm

Fig. S15 Cytotoxic effect of L^1 (5, 10, 20, 50 and 100 μ M) in HeLa cells incubated for 6 h

Reference

- (1) (a) A. Caballero, R. Martinez, V. Lloveras, I. Ratera, J. V. Gancedo, K. Wurst, A. Tarraga, P. Molina, J. Veciana, J. Am. Chem. Soc., 2005, 127, 15666; (b) A. Hakonen, Anal. Chem., 2009, 81, 4555.
- (2) H. A. Benesi, J. H. Hildebrand, J. Am. Chem. Soc., 1949, 71, 2703.