ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

A Novel Dansyl Appended Bile Acid Receptor for Preferential Recognition of $\mathbf{H g}^{\mathbf{2 +}}$

Pradeep K. Muwal, Shubha Pandey and Pramod S. Pandey*

Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.

* To whom the correspondence should be addressed.

E-mail: pramod@chemistry.iitd.ac.in (PS Pandey); Tel: +91 11 26591506;
Fax: +91 1126582037

Page No.

Synthesis of the compound $\mathbf{4}$ and $\mathbf{5}$ 3
Characterization of compound 5 3-4
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compound 5 4
Mass Spectrum of 5 5
Calibration plot for the detection limit 5
Change in Uv-vis spectra of $\mathbf{5}$ in the presence of Cu^{2+} 6
Competitive experiment of 5 in the presence of $\mathrm{Hg}^{2+}+$ other metal ions 7
Calibration plot showing stoichiometry and binding constant 8

General Synthesis:

Compounds $\mathbf{1}$ and $\mathbf{2}$ were synthesized according to the reported literature procedures. ${ }^{1}$ The propargyl dansyl amide (4) was synthesized by the reaction of dansyl-chloride with propargyl amine in the presence of triethylamine in dichloromethane according to the literature procedure. ${ }^{2}$ Afterwards receptor $\mathbf{5}$ was synthesized by the coupling of diazido derivative of deoxycholic acid (2) with propargyl dansyl amide (4) using click reaction.

[^0]
Synthesis of compound 5:

To a solution of $3 \beta, 12 \beta$-bis-(azidoacetyl)deoxycholate (2) ($800 \mathrm{mg}, 1.39 \mathrm{mmol}$) in 80 ml of t - BuOH , propargyl dansylamide (4) ($845 \mathrm{mg}, 2.93 \mathrm{mmol}$) was added. To this solution, $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%)$ and sodium ascorbate ($20 \mathrm{~mol} \%$) were added in 8.0 ml of $\mathrm{H}_{2} \mathrm{O}$. This reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 10 hours followed by evaporation under vacuum. The residue was dissolved in 50 ml of CHCl_{3} and washed with $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{ml})$ twice. Afterwards chloroform layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated completely. The crude product was purified by column chromatography over basic alumina (2% methanol in chloroform) to give pure 5. Yield: 80%, M.P.: $70-71^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 0.69$ (s, $3 \mathrm{H}, 18-\mathrm{Me}$), $0.80(\mathrm{~d}, 3 \mathrm{H}, J=5.1 \mathrm{~Hz}, 21-\mathrm{Me})$, 0.91 (s, 3H, 19-Me), 0.95-2.32 (26H, steroidal H), 2.88 ($6 \mathrm{H},-\mathrm{NCH}_{3} \times 6$), 3.67 (s, 3H, $\left.\mathrm{OCH}_{3}\right), 4.14\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NHCH}_{2}\right), 4.25\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NHCH}_{2}\right), 4.70(\mathrm{~m}, 1 \mathrm{H}, 3 \beta-\mathrm{H}), 5.07-5.29(\mathrm{~m}, 5 \mathrm{H}$, $\left.12 \beta-\mathrm{H},-\mathrm{OCOCH}_{2} \times 2\right), 6.03(\mathrm{~b}, 2 \mathrm{H},-\mathrm{NH} \times 2), 7.14(1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.17(1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.51(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.68 (2 H , Triazole-H), 8.26 (m, 4H, Ar-H), 8.11 (d, 1H, $J=6.0 \mathrm{~Hz}$, Ar-H), 8.5 $(\mathrm{d}, 1 \mathrm{H}, J=7.2, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 12.14,14.05,17.56,22.69$, 23.20, 25.12, 25.73, 25.86, 26.50, 27.12, 28.88, 29.08, 29.28, 29.43, 29.54, 29.61, 30.67, $30.69,30.90$, 31.42, 31.57, 31.85, 33.73, 33.90, 34.49, 34.57, 35.29, 38.49, 38.50, 41.51, $44.96,45.35,47.27,49.16,51.26,51.50,76.88,77.21,78.39,113.99,115.22,115.25,123.11$, 128.42, 129.29, 129.37, 129.48, 129.53, 129.76, 129.81, 130.41, 134.58, 134.73, 139.18, $151.78,165.25,165.76,174.69$.

IR $v_{\max }(\mathrm{KBr}) 3447.92,2930.92,2867.81,1741.04,1636.46,1456.64,1326.58,1224.24$, $1144.88 \mathrm{~cm}^{-1}$.

Figure S1a: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ in ppm) spectrum of compound 5 .

Figure S1b: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 5 .

Figure S2: Mass spectrum of compound 5.

Figure S3. Change in fluorescence intensity of 5 upon addition of Hg^{2+} for $0 \leq\left[\mathrm{Hg}^{2+}\right]$ $\leq 25 \mu \mathrm{M}$ (calibration plot for the calculation of detection limit).

Detection Limit:

Fluorescence intensity of $\mathbf{5}$ was varied linearly with $\left[\mathrm{Hg}^{2+}\right]$ upto $25 \mu \mathrm{M}$ and limit of detection for Hg^{2+} by $\mathbf{5}$ could be calculated by using calibration sensitivity (m) of relative fluorescence intensity versus $\left[\mathrm{Hg}^{2+}\right]$ in the aforementioned range. To calculate LOD , minimum change in the fluorescence intensity due to the presence of $\left[\mathrm{Hg}^{2+}\right]$ was taken to be $3 \times \mathrm{s}_{\mathrm{o}}$ where s_{o} represents standard deviation of F_{0} for 12 replicate measurements. Thus, the LOD is calculated using the formula $\operatorname{LOD}\left[\mathrm{Hg}^{2+}\right]=3 \times \mathrm{s}_{0} / \mathrm{m}$, and it was found to be $\sim 2 \mu \mathrm{M}$.

Fig S4. Change in UV-Vis spectra of receptor $\mathbf{5}(100 \mu \mathrm{M})$ upon addition of Cu^{2+} in $\mathrm{CHCl}_{3}: \mathrm{MeOH}(7: 3, \mathrm{v} / \mathrm{v})$.

Fig S5. \% reduction in the fluorescence intensity of $\mathbf{5}(25 \mu \mathrm{M})$ in the presence of $100 \mu \mathrm{M}$ each of Mn_{n} and Hg^{2+} in $\mathrm{CHCl}_{3}: \mathrm{MeOH}(7: 3, \mathrm{v} / \mathrm{v})$ at ambient conditions ($\lambda_{\text {excitation }}=$ 351 nm).

Figure S6. Change in fluorescence upon addition of Hg^{2+} for $0 \leq[\mathrm{Hg}] \leq 200 \mu \mathrm{M}$.

[^0]: 1. (a) Kumar, A.; Pandey, tetrahedron Lett. 2009, 50, 5842-5845. (b) Chhatra, R. K.; Kumar, A.; Pandey, P. S. J.Org. Chem. 2011, 76, 9086.
 2. Sarez, A. I.; Braden, M. R.; Gerdes, J. M.; Thompson, C. M. Bioorg. Med. Chem. Letts.2010, 20, 194.
