ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

A Novel Dansyl Appended Bile Acid Receptor for Preferential Recognition of Hg²⁺

Pradeep K. Muwal, Shubha Pandey and Pramod S. Pandey*

Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.

* To whom the correspondence should be addressed.

E-mail: pramod@chemistry.iitd.ac.in (*PS Pandey*); *Tel: +91 11 26591506*;

Fax: +91 11 26582037

Table of contents

Page No.

Synthesis of the compound 4 and 5	3
Characterization of compound 5	3-4
¹ H and ¹³ C NMR of Compound 5	4
Mass Spectrum of 5	5
Calibration plot for the detection limit	5
Change in Uv-vis spectra of 5 in the presence of Cu^{2+}	6
Competitive experiment of 5 in the presence of Hg^{2+} + other metal ions	7
Calibration plot showing stoichiometry and binding constant	8

General Synthesis:

Compounds **1** and **2** were synthesized according to the reported literature procedures.¹ The propargyl dansyl amide (**4**) was synthesized by the reaction of dansyl-chloride with propargyl amine in the presence of triethylamine in dichloromethane according to the literature procedure.² Afterwards receptor **5** was synthesized by the coupling of diazido derivative of deoxycholic acid (**2**) with propargyl dansyl amide (**4**) using click reaction.

- (a) Kumar, A.; Pandey, *tetrahedron Lett.* 2009, 50, 5842-5845. (b) Chhatra, R. K.; Kumar, A.; Pandey, P. S. *J.Org. Chem.* 2011, 76, 9086.
- 2. Sarez, A. I.; Braden, M. R.; Gerdes, J. M.; Thompson, C. M. Bioorg. Med. Chem. Letts. 2010, 20, 194.

Synthesis of compound 5:

To a solution of 3β , 12β -*bis*-(azidoacetyl)deoxycholate (**2**) (800 mg, 1.39 mmol) in 80 ml of *t*-BuOH, propargyl dansylamide (**4**) (845 mg, 2.93 mmol) was added. To this solution, CuSO₄.5H₂O (10 mol %) and sodium ascorbate (20 mol %) were added in 8.0 ml of H₂O. This reaction mixture was stirred at 50 °C for 10 hours followed by evaporation under vacuum. The residue was dissolved in 50 ml of CHCl₃ and washed with H₂O (40 ml) twice. Afterwards chloroform layer was dried over anhydrous Na₂SO₄, filtered and evaporated completely. The crude product was purified by column chromatography over basic alumina (2% methanol in chloroform) to give pure **5**. Yield: 80 %, **M.P.**: 70-71 °C.

¹**H** NMR (300 MHz, CDCl₃, TMS) δ 0.69 (s, 3H, 18-Me), 0.80 (d, 3H, J = 5.1 Hz, 21-Me), 0.91 (s, 3H, 19-Me), 0.95-2.32 (26H, steroidal H), 2.88 (6H, -NCH₃ × 6), 3.67 (s, 3H, -OCH₃), 4.14 (s, 2H, -NHCH₂), 4.25 (s, 2H, -NHCH₂), 4.70 (m, 1H, 3β-H), 5.07-5.29 (m, 5H, 12β-H, - OCOCH₂ × 2), 6.03 (b, 2H, -NH × 2), 7.14 (1H, Ar-H), 7.17 (1H, Ar-H), 7.51 (m, 4H, Ar-H), 7.68 (2H, Triazole-H), 8.26 (m, 4H, Ar-H), 8.11 (d, 1H, J = 6.0 Hz, Ar-H), 8.5 (d, 1H, J = 7.2, Ar-H); ¹³C NMR (300 MHz, CDCl₃, TMS) δ 12.14, 14.05, 17.56, 22.69, 23.20, 25.12, 25.73, 25.86, 26.50, 27.12, 28.88, 29.08, 29.28, 29.43, 29.54, 29.61, 30.67, 30.69, 30.90, 31.42, 31.57, 31.85, 33.73, 33.90, 34.49, 34.57, 35.29, 38.49, 38.50, 41.51, 44.96, 45.35, 47.27, 49.16, 51.26, 51.50, 76.88, 77.21, 78.39, 113.99, 115.22, 115.25, 123.11, 128.42, 129.29, 129.37, 129.48, 129.53, 129.76, 129.81, 130.41, 134.58, 134.73, 139.18, 151.78, 165.25, 165.76, 174.69.

IR v_{max} (KBr) 3447.92, 2930.92, 2867.81, 1741.04, 1636.46, 1456.64, 1326.58, 1224.24, 1144.88 cm⁻¹.

HRMS (ESI, MS) m/z: calcd for $C_{59}H_{76}N_{10}O_{10}NaS_2$ 1171.5085, found 1171.5087, (M + Na).

Figure S1a: ¹H NMR (300 MHz, CDCl₃, δ in ppm) spectrum of compound 5.

Figure S1b: ¹³C NMR spectrum of compound 5.

Figure S2: Mass spectrum of compound 5.

Figure S3. Change in fluorescence intensity of **5** upon addition of Hg^{2+} for $0 \le [Hg^{2+}] \le 25 \ \mu M$ (calibration plot for the calculation of detection limit).

Detection Limit:

Fluorescence intensity of **5** was varied linearly with $[Hg^{2+}]$ upto 25µM and limit of detection for Hg^{2+} by **5** could be calculated by using calibration sensitivity (m) of relative fluorescence intensity versus $[Hg^{2+}]$ in the aforementioned range. To calculate LOD, minimum change in the fluorescence intensity due to the presence of $[Hg^{2+}]$ was taken to be $3 \times s_0$ where s_0 represents standard deviation of F_0 for 12 replicate measurements. Thus, the LOD is calculated using the formula LOD $[Hg^{2+}] = 3 \times s_0/m$, and it was found to be ~2 µM.

Fig S4. Change in UV-Vis spectra of receptor 5 (100 μ M) upon addition of Cu²⁺ in CHCl₃:MeOH (7:3, v/v).

Fig S5. % reduction in the fluorescence intensity of 5 (25 μ M) in the presence of 100 μ M each of M_{n+} and Hg²⁺ in CHCl₃:MeOH (7:3, v/v) at ambient conditions (λ excitation =

351 nm).

Figure S6. Change in fluorescence upon addition of Hg^{2+} for $0 \le [Hg] \le 200 \ \mu M$.